Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences, respectively. A wheat chloroplast site-specific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase II (nptII) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T(1) progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T(1) progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/abbs/gmr008 | DOI Listing |
JACS Au
December 2024
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
Chlamydomonas reinhardtii, a model green alga for expressing foreign proteins, faces challenges in multigene expression and enhancing protein expression level in the chloroplast. To address these challenges, we compared heterologous promoters, terminators and intercistronic expression elements (IEEs). We transformed Chlamydomonas chloroplast with a biolistic approach to introduce vectors containing the NanoLuc expression unit regulated by Chlamydomonas or tobacco promoters and terminators.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, Tennessee 37996, United States.
Plastids represent promising targets in plant genetic engineering for many biotech applications, ranging from their use as bioreactors for the overproduction of valuable molecules to the installation of transgenes for improving plant traits. For over 30 years, routine methods of plastid transformation have relied on homologous recombination integrating vectors. However, nonintegrating episomal plasmids have recently received more attention as an innovative tool for the plastid genetic engineering of plant cells.
View Article and Find Full Text PDFFood Chem
December 2024
Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:
Shaking, essential in oolong tea production, is becoming an innovative method to impart floral fragrance. Research on shaking primarily concentrates on biological underpinnings, including modifications in gene expression and stress-triggered enzymatic catalysis, and consequent physicochemical properties. Water phase and distribution, reshaped by shaking and affected the biological and physicochemical alterations of tea leaves, is always ignored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!