A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery. | LitMetric

AI Article Synopsis

  • Convection-enhanced delivery (CED) is a technique used to transport large drugs to the brain, which is important for treating conditions like Parkinson's, Alzheimer's, and tumors.* -
  • Current research utilizes agarose gels to mimic brain tissue for studying how drugs move, but there's a lack of cost-effective methods to measure how well these drugs distribute in the gel during CED.* -
  • An innovative optical method has been developed to precisely measure drug concentration in agarose, using a geometry correction algorithm and light intensity data, and the results align well with theoretical models of drug transport.*

Article Abstract

Convection-enhanced delivery (CED) is a promising technique to deliver large molecular weight drugs to the human brain for treatment of Parkinson's, Alzheimer's, or brain tumors. Researchers have used agarose gels to study mechanisms of agent transport in soft tissues like brain due to its similar mechanical and transport properties. However, inexpensive quantitative techniques to precisely measure achieved agent distribution in agarose gel phantoms during CED are missing. Such precise measurements of concentration distribution are needed to optimize drug delivery. An optical experimental method to accurately quantify agent concentration in agarose is presented. A novel geometry correction algorithm is used to determine real concentrations from observable light intensities captured by a digital camera. We demonstrate the technique in dye infusion experiments that provide cylindrical and spherical distributions when infusing with porous membrane and conventional single-port catheters, respectively. This optical method incorporates important parameters, such as optimum camera exposure, captured camera intensity calibration, and use of collimated light source for maximum precision. We compare experimental results with numerical solutions to the convection diffusion equation. The solutions of convection-diffusion equations in the cylindrical and spherical domains were found to match the experimental data obtained by geometry correction algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2010.2089455DOI Listing

Publication Analysis

Top Keywords

agent concentration
8
agarose gel
8
convection-enhanced delivery
8
geometry correction
8
correction algorithm
8
cylindrical spherical
8
methods determining
4
agent
4
determining agent
4
concentration profiles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!