We report a microfluidic chip-based hydrodynamic focusing approach that minimizes sample volume for the analysis of cell-surface interactions under controlled fluid-shear conditions. Assays of statistically meaningful numbers of translocating platelets interacting with immobilized von Willebrand factor at arterial shear rates (∼1500 s(-1)) are demonstrated. By controlling spatial disposition and relative flow rates of two contacting fluid streams, e.g., sample (blood) and aqueous buffer, on-chip hydrodynamic focusing guides the cell-containing stream across the protein surface as a thin fluid layer, consuming ∼50 μL of undiluted whole blood for a 2-min platelet assay. Control of wall shear stress is independent of sample consumption for a given flow time. The device design implements a mass-manufacturable fabrication approach. Fluorescent labeling of cells enables readout using standard microscopy tools. Customized image-analysis software rapidly quantifies cellular surface coverage and aggregate size distributions as a function of time during blood-flow analyses, facilitating assessment of drug treatment efficacy or diagnosis of disease state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2010.2090659 | DOI Listing |
Light Sci Appl
January 2025
Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Complex Fluids Laboratory, Advanced Materials and Systems Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Microfluidic-chip based hydrodynamic filtration is one of the passive sorting techniques that can separate cell or particle suspensions into subpopulations of different sizes. As the branch channels and side channels play an important role in maintaining particle focusing, their rational design is necessary for highly efficient sorting. A model framework involving multiple side and multiple branch channels has been developed by extending the analytical analysis of three-dimensional laminar flow in channel networks, which was previously validated by comparison with numerical simulations.
View Article and Find Full Text PDFBiomolecules
November 2024
Menzies School of Health Research, Darwin, NT 0810, Australia.
This study uses a novel method in which extracts from different parts of a single plant are used to synthesize well-defined silver nanoparticles (AgNPs) to address the lack of capping agents in certain plant extracts. We focused on synthesizing AgNPs with enhanced biomedical activity using aqueous leaves and fruit extracts of Exell, a plant native to northern Australia that is known for its high phenolic content and associated health benefits. The impact of using parameters such as the Ag ion-to-extract ratio and pH on AgNP synthesis was examined.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 602 00, Brno, Czech Republic.
We investigated the production of highly reactive oxygen species (ROS) in solutions undergoing treatment using CaviPlasma (CP) technology. This technology combines plasma discharge with hydrodynamic cavitation. This study focused on factors such as pH, conductivity, presence of salts and organic matter affecting ROS formation and their stability in solutions.
View Article and Find Full Text PDFLab Chip
December 2024
Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507, USA.
Microfluidic-based sheath flow focusing methods have been widely used for efficiently isolating, concentrating, and detecting pathogenic bacteria for various biomedical applications due to their enhanced sensitivity and exceptional integration. However, such a microfluidic device usually needs complicated device fabrication and sample dilution, hampering the efficient and sensitive identification of target bacteria. In this study, we develop and fabricate a sheath-assisted and pneumatic-induced nano-sieve device for achieving the improved on-chip concentration and sensitive detection of (MRSA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!