Background: Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors.
Results: This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m = 22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m = 28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc.
Conclusions: The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044304 | PMC |
http://dx.doi.org/10.1186/1471-2105-12-S1-S47 | DOI Listing |
Biofouling
January 2025
Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Brazil.
The dairy industry faces challenges in controlling spoilage microorganisms, particularly , known to form resilient biofilms. Conventional disinfection methods have limitations, prompting the exploration of eco-friendly alternatives like ozone. This study focused on biofilms on polystyrene and polyethylene surfaces, evaluating ozone efficacy when incorporated into different water sources and applied under static and dynamic conditions.
View Article and Find Full Text PDFMycobiology
November 2024
Department of Biology Education, Korea National University of Education, Cheongju, Korea.
Ectomycorrhizal fungi (EMF) are crucial for the formation of fruiting bodies, including the newly discovered , in Korea. This study explores the diversity and distribution of EMF communities associated with across various regions in Korea and assesses the effects of soil physicochemical properties on these communities. Soil analysis indicated that habitats have a lower pH compared to habitats documented in other studies, with sandy loam texture being optimal for fruiting body development.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559.
Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.
View Article and Find Full Text PDFRSC Adv
January 2025
Genome Institute of Singapore (GIS), Agency for Science, Technological, and Research (A*STAR) 60 Biopolis Street, Genome Singapore 138672.
Monitoring physiological changes within cells is crucial for understanding their biological aspects and pathological activities. Fluorescent probes serve as powerful tools for this purpose, offering advantageous characteristics over genetically encoded probes. While numerous organelle-selective probes have been developed in the past decades, several challenges persist.
View Article and Find Full Text PDFFront Microbiol
January 2025
Liaoning Academy of Agricultural Sciences, Shenyang, China.
Purpose: In order to investigate the effects of a rice-crab coculture mode and its duration on the richness and diversity of the soil microbial community.
Method: Soil from long-term rice-crab coculture mode (MY), newly established rice-crab coculture mode (OY) and rice monoculture mode (N) were used to measured soil physicochemical properties, enzyme activity and 16S and ITS soil microbial communities.
Results: The results revealed that in terms of mode, the MBC, MBN and CAT of OY were significantly greater than those of N by 10.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!