Background: With the availability of large scale expression compendia it is now possible to view own findings in the light of what is already available and retrieve genes with an expression profile similar to a set of genes of interest (i.e., a query or seed set) for a subset of conditions. To that end, a query-based strategy is needed that maximally exploits the coexpression behaviour of the seed genes to guide the biclustering, but that at the same time is robust against the presence of noisy genes in the seed set as seed genes are often assumed, but not guaranteed to be coexpressed in the queried compendium. Therefore, we developed ProBic, a query-based biclustering strategy based on Probabilistic Relational Models (PRMs) that exploits the use of prior distributions to extract the information contained within the seed set.

Results: We applied ProBic on a large scale Escherichia coli compendium to extend partially described regulons with potentially novel members. We compared ProBic's performance with previously published query-based biclustering algorithms, namely ISA and QDB, from the perspective of bicluster expression quality, robustness of the outcome against noisy seed sets and biological relevance.This comparison learns that ProBic is able to retrieve biologically relevant, high quality biclusters that retain their seed genes and that it is particularly strong in handling noisy seeds.

Conclusions: ProBic is a query-based biclustering algorithm developed in a flexible framework, designed to detect biologically relevant, high quality biclusters that retain relevant seed genes even in the presence of noise or when dealing with low quality seed sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044293PMC
http://dx.doi.org/10.1186/1471-2105-12-S1-S37DOI Listing

Publication Analysis

Top Keywords

query-based biclustering
16
seed genes
16
seed
9
probabilistic relational
8
relational models
8
large scale
8
seed set
8
probic query-based
8
seed sets
8
biologically relevant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!