Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3549816DOI Listing

Publication Analysis

Top Keywords

master equation
16
open quantum
12
time-dependent density
8
density functional
8
functional theory
8
quantum systems
8
systems evolving
8
excitation spectra
8
equation yielding
8
equation
5

Similar Publications

Pressure-dependent kinetic analysis of the NH potential energy surface.

Phys Chem Chem Phys

January 2025

Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.

View Article and Find Full Text PDF

We study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.

View Article and Find Full Text PDF

This study applied cumulative sum (CUSUM) analysis to evaluate trends in operative time and blood loss, It aims to identify key milestones in mastering extraperitoneal single-site robotic-assisted radical prostatectomy (ss-RARP). A cohort of 100 patients who underwent ss-RARP, performed by a single surgeon at the First Affiliated Hospital of Guangzhou Medical University between March 2021 and June 2023, was retrospectively analyzed. To evaluate the learning curve, the CUSUM (Cumulative Sum Control Chart) technique was applied, revealing the progression and variability over time.

View Article and Find Full Text PDF

Full-dimensional accurate potential energy surface and dynamics for the unimolecular isomerization reaction CH3NC ⇌ CH3CN.

J Chem Phys

January 2025

School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.

The reaction CH3NC ⇌ CH3CN, a model reaction for the study of unimolecular isomerization, is important in astronomy and atmospheric chemistry and has long been studied by numerous experiments and theories. In this work, we report the first full-dimensional accurate potential energy surface (PES) of this reaction by the permutation invariant polynomial-neural network method based on 30 974 points, whose energies are calculated at the CCSD(T)-F12a/AVTZ level. Then, ring polymer molecular dynamics is used to derive the free energy barrier of the reaction at the experimental temperature range of 472.

View Article and Find Full Text PDF

Background: Mating disruption (MD) is a worthwhile technique for the control of and in central Europe and Mediterranean areas. MD efficacy is affected by the pheromone release (PR), which in turn is influenced by environmental conditions.

Methods: The effect of weather conditions on PR was evaluated under four different fields in northern Italy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!