AI Article Synopsis

  • Researchers developed a new type of elastomer called poly(diol-co-citrate) that is biocompatible with vascular cells and can control the release of nitric oxide (NO).
  • This NO release can have different effects on cells, either slowing their growth (cytostatic) or killing them (cytotoxic), depending on the amount and duration of exposure.
  • When tested in rats with artery injuries, these elastomers reduced the excessive growth of intimal tissue (neointimal hyperplasia) and show potential for treating other cardiovascular diseases using NO therapy.

Article Abstract

The synthesis of poly(diol-co-citrate) elastomers that are biocompatible with vascular cells and can modulate the kinetics of the NO release based on the diol of selection is reported. NO-mediated cytostatic or cytotoxic effects can be controlled depending on the NO dose and the exposure time. When implanted in vivo in a rat carotid artery injury model, these materials demonstrate a significant reduction of neointimal hyperplasia. This is the first report of a NO-releasing polymer fabricated in the form of an elastomeric perivascular wrap for the treatment of neointimal hyperplasia. These elastomers also show promise for other cardiovascular pathologies where NO-based therapies could be beneficial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068126PMC
http://dx.doi.org/10.1002/mabi.201000509DOI Listing

Publication Analysis

Top Keywords

neointimal hyperplasia
12
elastomeric perivascular
8
reduction neointimal
8
polydiol-co-citrates novel
4
novel elastomeric
4
perivascular wraps
4
wraps reduction
4
hyperplasia synthesis
4
synthesis polydiol-co-citrate
4
polydiol-co-citrate elastomers
4

Similar Publications

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.

Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.

View Article and Find Full Text PDF

Evaluation of in-stent restenosis after carotid artery stenting with superb microvascular imaging: initial findings.

Acta Radiol

January 2025

Department of Radiology, Interventional Radiology, Sağlık Bilimleri Üniversitesi Ankara Dışkapı Yıldırım Beyazıt Eğitim ve Araştırma Hastanesi, Ankara, Türkiye.

Background: Carotid artery stenting (CAS) is an interventional management in preventing ischemic stroke caused by carotid artery stenosis. After the treatment with CAS, in-stent restenosis caused by neointimal hyperplasia may develop.

Purpose: This study aims to obtain a better determination of neointimal hyperplasia using superb microvascular imaging (SMI), which provides a high-quality visualization of the endoluminal lesions, and to compare these results with B-mode and Doppler ultrasound (US).

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!