A theoretical exploration of birhythmicity in the p53-Mdm2 network.

PLoS One

COMORE Project-team, INRIA Sophia Antipolis, Sophia Antipolis, France.

Published: February 2011

Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038873PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017075PLOS

Publication Analysis

Top Keywords

p53-mdm2 network
16
differential model
16
birhythmicity p53-mdm2
8
existence birhythmicity
8
origin birhythmic
8
birhythmic behavior
8
piecewise linear
8
linear differential
8
phase space
8
model
5

Similar Publications

Knockdown Proteomics Reveals USP7 as a Regulator of Cell-Cell Adhesion in Colorectal Cancer via AJUBA.

Mol Cell Proteomics

December 2024

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom. Electronic address:

Ubiquitin-specific protease 7 (USP7) is implicated in many cancers including colorectal cancer in which it regulates cellular pathways such as Wnt signaling and the P53-MDM2 pathway. With the discovery of small-molecule inhibitors, USP7 has also become a promising target for cancer therapy and therefore systematically identifying USP7 deubiquitinase interaction partners and substrates has become an important goal. In this study, we selected a colorectal cancer cell model that is highly dependent on USP7 and in which USP7 knockdown significantly inhibited colorectal cancer cell viability, colony formation, and cell-cell adhesion.

View Article and Find Full Text PDF

Prenatal alcohol exposure is a leading cause of permanent neurodevelopmental disability and can feature distinctive craniofacial deficits that partly originate from the apoptotic deletion of craniofacial progenitors, a stem cell lineage called the neural crest (NC). We recently demonstrated that alcohol causes nucleolar stress in NC through its suppression of ribosome biogenesis (RBG) and this suppression is causative in their p53/MDM2-mediated apoptosis. Here, we show that this nucleolar stress originates from alcohol's activation of AMPK, which suppresses TORC1 and the p70/S6K-mediated stimulation of RBG.

View Article and Find Full Text PDF

An optimal Bayesian intervention policy in response to unknown dynamic cell stimuli.

Inf Sci (N Y)

May 2024

Northeastern University, 360 Huntington Ave, Boston, MA, 02115, United States of America.

Interventions in gene regulatory networks (GRNs) aim to restore normal functions of cells experiencing abnormal behavior, such as uncontrolled cell proliferation. The dynamic, uncertain, and complex nature of cellular processes poses significant challenges in determining the best interventions. Most existing intervention methods assume that cells are unresponsive to therapies, resulting in stationary and deterministic intervention solutions.

View Article and Find Full Text PDF

Prenatal alcohol exposure is a leading cause of permanent neurodevelopmental disability and can feature distinctive craniofacial deficits that partly originate from the apoptotic deletion of craniofacial progenitors, a stem cell lineage called the neural crest (NC). We recently demonstrated that alcohol causes nucleolar stress in NC through its suppression of ribosome biogenesis (RBG) and this suppression is causative in their p53/MDM2-mediated apoptosis. Here, we show that this nucleolar stress originates from alcohol's activation of AMPK, which suppresses TORC1 and the p70/S6K-mediated stimulation of RBG.

View Article and Find Full Text PDF

Genetically identical cells can respond heterogeneously to cancer therapy, with a subpopulation of cells often entering a temporarily arrested treatment-tolerant state before repopulating the tumor. To investigate how heterogeneity in the cell cycle arrest protein p21 arises, we imaged the dynamics of p21 transcription and protein expression along with those of p53, its transcriptional regulator, in single cells using live cell fluorescence microscopy. Surprisingly, we found that the rate of p21 transcription depends on the change in p53 rather than its absolute level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!