The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equipped with negatively charged rings, simply called traps. We demonstrate that the presence of these traps within the interior of the nanopore dramatically alters the free energy landscape for the partitioning of the polypeptide into the nanopore interior, as revealed by significant modifications in the activation free energies required for the transitions of the polypeptide from one state to the other. Our kinetic model permits the calculation of the relative and absolute exit frequencies of the short cationic polypeptides through either opening of the nanopore. Moreover, this approach enabled quantitative assessment of the kinetics of translocation of the polypeptides through a protein nanopore, which is strongly dependent on several factors, including the nature of the translocating polypeptide, the position of the traps, the strength of the polypeptide-attractive trap interactions and the applied transmembrane voltage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108026 | PMC |
http://dx.doi.org/10.1088/0953-8984/22/45/454117 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, People's Republic of China.
Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39.
View Article and Find Full Text PDFFASEB J
January 2025
Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS, University Lyon 1, Lyon Cedex 07, France.
G-Protein Coupled Receptor, Class C, Group 5, Member A (GPRC5A) has been extensively studied in lung and various epithelial cancers. Nevertheless, its role in the skin remains to be elucidated. In this study, we sought to investigate the function of this receptor in skin biology.
View Article and Find Full Text PDFEur Thyroid J
January 2025
H Heuer, Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.
Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!