Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We previously showed that monophosphoryl lipid A (MLA) activates TLR4 in dendritic cells (DCs) in a Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF)-biased manner: MLA produced from Salmonella minnesota Re595 induced signaling events and expression of gene products that were primarily TRIF dependent, whereas MyD88-dependent signaling was impaired. Moreover, when tested in TRIF-intact/MyD88-deficient DCs, synthetic MLA of the Escherichia coli chemotype (sMLA) showed the same activity as its diphosphoryl, inflammatory counterpart (synthetic diphosphoryl lipid A), indicating that TRIF-mediated signaling is fully induced by sMLA. Unexpectedly, we found that the transcript level of one proinflammatory cytokine was increased in sMLA-treated cells by MyD88 deficiency to the higher level induced by synthetic diphosphoryl lipid A, which suggested MyD88 may paradoxically help restrain proinflammatory signaling by TRIF-biased sMLA. In this article, we demonstrate that sMLA induces MyD88 recruitment to TLR4 and activates the anti-inflammatory lipid phosphatase SHIP1 in an MyD88-dependent manner. At the same time, MyD88-dependent signaling activity at the level of IL-1R-associated kinase 1 is markedly reduced. Increased SHIP1 activity is associated with reductions in sMLA-induced IκB kinase α/β and IFN regulatory factor 3 activation and with restrained expression of their downstream targets, endothelin-1 and IFN-β, respectively. Results of this study identify a pattern that is desirable in the context of vaccine adjuvant design: TRIF-biased sMLA can stimulate partial MyD88 activity, with MyD88-dependent SHIP1 helping to reduce proinflammatory signaling in DCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249415 | PMC |
http://dx.doi.org/10.4049/jimmunol.1001034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!