Beraprost enhances the APC function of B cells by upregulating CD86 expression levels.

J Immunol

Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.

Published: April 2011

Lipid mediators are emerging as important regulators of the immune system. Based on our previous result that shows strong expression of prostacyclin synthase in the germinal center, we investigated whether prostacyclin would regulate the APC function of B cells. Owing to the very short half-life of prostacyclin in experimental conditions, we used a more stable analog, beraprost. Beraprost increased the amounts of the costimulatory molecule CD86 but not CD80 on the surface of activated B cells in time- and dose-dependent manners. However, the enhancing effect of beraprost was not observed on memory B cells, centroblasts, and centrocytes. Beraprost required BCR and CD40 signals to upregulate CD86 expression levels. Other prostanoids such as PGE(2), 6-keto-PGF(1α), and PGF(2α) failed to alter CD86 expression levels, whereas other prostacyclin analogs were as potent as beraprost. Results carried out with receptor antagonists revealed that beraprost enhanced CD86 levels by binding to prostacyclin receptor IP and by increasing intracellular cAMP concentrations. Beraprost-treated B cells potently stimulated allogeneic T cells, which was significantly abolished by CD86 neutralization. Our data imply an unrecognized cellular and molecular mechanism about the germinal center reactions.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1002170DOI Listing

Publication Analysis

Top Keywords

cd86 expression
12
expression levels
12
apc function
8
function cells
8
germinal center
8
beraprost
7
cells
6
cd86
6
prostacyclin
5
beraprost enhances
4

Similar Publications

PEDV is a highly contagious enteric pathogen that can cause severe diarrhea and death in neonatal pigs. Despite extensive research, the molecular mechanisms of host's response to PEDV infection remain unclear. In this study, differentially expressed genes (DEGs), time-specific coexpression modules, and key regulatory genes associated with PEDV infection were identified.

View Article and Find Full Text PDF

Paeoniflorin inhibits APEC-induced inflammation in HD11 cells through the NF-κB signaling pathway by activating CBR.

Poult Sci

December 2024

College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a bacterial pathogen that threatens poultry reproduction by inciting systemic inflammation and leading to chicken colibacillosis. The endocannabinoid system (ECS) is an immunomodulator system that regulates inflammatory responses. In this study, we aimed to investigate the anti-inflammatory effect of paeoniflorin on APEC-infected HD11 cells and its underlying mechanism.

View Article and Find Full Text PDF

Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis.

J Nanobiotechnology

December 2024

Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.

Background: Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis.

View Article and Find Full Text PDF

Endoplasmic reticulum stress (ERs) is implicated in antitumor immunity. However, the exact role of ERs in mediating the effects of dendritic cells (DCs) is not unclear. In this study, we explored the role of exosomes derived from ER-stressed hepatocellular carcinoma (HCC) cells in the antitumor effects of DCs and the precise underlying mechanism.

View Article and Find Full Text PDF

Background: Tumor-specific antigens play an important role in dendritic cell (DC)-based immunotherapy. The acquisition of tumor-specific antigens, which are essential for DC-based immunotherapy, poses a significant challenge. This study aimed to explore the efficacy of hypoxia inducible factor-1α (HIF-1α) overexpression tumor antigens in DC-based immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!