Cyanobacterial metabolites, both toxic and non-toxic, are a major problem for the water industry. Nanofiltration (NF) may be an effective treatment option for removing organic micropollutants, such as cyanobacterial metabolites, from drinking water due to its size exclusion properties. A rapid bench scale membrane test (RBSMT) unit was utilised to trial four NF membranes to remove the cyanobacterial metabolites, microcystin, cylindrospermopsin (CYN), 2-methylisoborneol (MIB) and geosmin (GSM) in two treated waters sourced from the Palmer and Myponga water treatment plants. Membrane fouling was observed for both treated waters; however, only minor differences were observed between feed waters of differing natural organic matter (NOM) concentration. Low molecular weight cut-off (MWCO), or 'tight' NF, membranes afforded average removals above 90% for CYN, while removal by higher MWCO, or 'loose' NF membranes was lower. MIB and GSM were removed effectively (above 75%) by tight NF but less effectively by loose NF. Microcystin variants (MCRR, MCYR, MCLR, MCLA) were removed to above 90% by tight NF membranes; however, removal using loose NF membranes depended on the hydrophobicity and charge of the variant. Different NOM concentration in the treated waters had no effect on the removal of cyanobacterial metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2011.01.111DOI Listing

Publication Analysis

Top Keywords

cyanobacterial metabolites
20
treated waters
16
removal cyanobacterial
8
nom concentration
8
metabolites
5
waters
5
membranes
5
removal
4
metabolites nanofiltration
4
treated
4

Similar Publications

Inhibition mechanism of Microcystis aeruginosa in coculture of Lemna and Azolla: Insights from non-targeted Metabonomics.

Plant Physiol Biochem

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:

Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.

View Article and Find Full Text PDF

Mycosporine-like amino acids are water-soluble secondary metabolites that protect photosynthetic microorganisms from ultraviolet radiation. Here, we present direct evidence for the production of these compounds in surface scums of cyanobacteria along the Baltic Sea coast. We collected 59 environmental samples from the southern coast of Finland during the summers of 2021 and 2022 and analysed them using high-resolution liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.

View Article and Find Full Text PDF

The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.

View Article and Find Full Text PDF

Dormancy: Metabolite pools prime the cyanobacterial dormancy-resuscitation switch.

Curr Biol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany. Electronic address:

Non-N-fixing cyanobacteria enter a state of dormancy when fixed nitrogen becomes limiting. Resuscitation from this state involves a complex program of events. A new study reveals how the dormancy-resuscitation switch is governed by metabolite-level control of glucose-6-phosphate dehydrogenase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!