A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. | LitMetric

This study explores the potential antimicrobial mechanisms of commercial silver nanoparticles (Ag NPs) in the environmental bacterium, Pseudomonas chlororaphis O6. The 10nm size NPs aggregated in water, as demonstrated by atomic force microscopy. Solubility of the NPs at 10mg/L was 0.28 mg/L (pH 6) and 2.3mg/L (pH 7); release from 10mg/L bulk Ag was below detection. The NPs eliminated cell culturability at 3mg/L, whereas no effect was observed at 10mg/L bulk Ag. Zeta potential measurements revealed that the NPs were negatively charged; unlike Ag ions, their addition to the negatively charged cells did not change cell charge at pH 6, but showed a trend to reduce cell charge at pH 7. Isolated extracellular polymeric substances (EPS) from PcO6 was polydisperse, with negative charge that was neutralized by Ag ions, but not by the NPs. Addition of EPS eliminated Ag NP's toxicity in cells lacking EPS. Intracellular accumulation of OH was not detected in NP-treated cells; however, the use of scavengers suggested the NPs caused extracellular H(2)O(2) production. No evidence was found for loss of membrane integrity upon treatment with the NPs. Our findings indicate that growth of environmental bacteria could be impaired by Ag NPs, depending on the extent of EPS production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2011.01.118DOI Listing

Publication Analysis

Top Keywords

nps
9
silver nanoparticles
8
bacterium pseudomonas
8
pseudomonas chlororaphis
8
10mg/l bulk
8
negatively charged
8
cell charge
8
interaction silver
4
nanoparticles environmentally
4
environmentally beneficial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!