We examined the metabolism of two synthetic analogs of 1α,25-dihydroxyvitamin D₃ (1), namely 1α,25-dihydroxy-16-ene-23-yne-vitamin D₃ (2) and 1α,25-dihydroxy-16-ene-23-yne-26,27-dimethyl-vitamin D₃ (4) using rat cytochrome P450 24A1 (CYP24A1) in a reconstituted system. We noted that 2 is metabolized into a single metabolite identified as C26-hydroxy-2 while 4 is metabolized into two metabolites, identified as C26-hydroxy-4 and C26a-hydroxy-4. The structural modification of adding methyl groups to the side chain of 1 as in 4 is also featured in another analog, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomo-vitamin D₃ (6). In a previous study, 6 was shown to be metabolized exactly like 4, however, the enzyme responsible for its metabolism was found to be not CYP24A1. To gain a better insight into the structural determinants for substrate recognition of different analogs, we performed an in silico docking analysis using the crystal structure of rat CYP24A1 that had been solved for the substrate-free open form. Whereas analogs 2 and 4 docked similar to 1, 6 showed altered interactions for both the A-ring and side chain, despite prototypical recognition of the CD-ring. These findings hint that CYP24A1 metabolizes selectively different analogs of 1, based on their ability to generate discrete recognition cues required to close the enzyme and trigger the catalytic mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367454 | PMC |
http://dx.doi.org/10.1016/j.abb.2011.02.004 | DOI Listing |
Sci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India. Electronic address:
Luffa cylindrica (L.), is a medicinal plant aimed to investigate the efficacy of the alkaloid-rich fraction (ARF) extracted from L. cylindrica.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510800, China.
Irbesartan improves ventricular remodeling (VR) following myocardial infarction (MI). This study investigates whether irbesartan attenuates VR by reducing aldosterone production in the heart and its underlying mechanisms. MI was induced in male Sprague-Dawley rats through coronary artery ligation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!