In this study the temperature dependent confor-mation of hexa(ethylene glycol) self-assembling monolayers (SAMs) under aqueous conditions (in situ) is investigated. To this end characteristic absorption modes in the fingerprint region (1050-1500 cm(-1)) were monitored with real-time polarization modulation infrared spectroscopy. We found a temperature induced conformational change from predominantly helical to helical/all-trans. The process may be divided into two temperature regimes. Up to 40 °C the process is reversible after drying the monolayers in air and successive reimmersion in water, indicating a strong binding of the water molecules to the SAM. At higher temperatures, the conformational change is irreversible. Additionally, a rapid change to a larger mode width and a shift of the mode position to higher wavenumbers (blue-shift) at about 50 °C indicates structural changes caused by decreasing crystallinity of the SAM. While the conformational changes up to 40 °C are supposed to originate from an increased conformational freedom in combination with a stronger interaction with water molecules, the irreversibility and rapid change of mode characteristics at higher temperatures indicate chemical degradation. Complementary measurements in air show a fast and virtually complete reversibility up to 40 °C underlining the effect of the interaction of the ethylene glycol moiety with water. At temperatures above 50 °C modes indicating ester and formate groups appear, supporting the idea of chemical degeneration. Moreover, the temperature behavior is coverage dependent. At incomplete coverage the structural order of the SAM starts decreasing at lower temperatures. This study shows, that the conformational and structural change of hexa(ethylene glycol) SAMs at elevated temperature is an interplay of conformational changes of the SAM, its interaction with water and at higher temperatures its chemical degradation. Our experiments also underline the importance of the in situ analysis on the film structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la104132qDOI Listing

Publication Analysis

Top Keywords

higher temperatures
12
elevated temperature
8
hexaethylene glycol
8
conformational change
8
water molecules
8
rapid change
8
conformational changes
8
interaction water
8
chemical degradation
8
temperature
6

Similar Publications

Climate change has heightened the need to understand physical climate risks, such as the increasing frequency and severity of heat waves, for informed financial decision-making. This study investigates the financial implications of extreme heat waves on stock returns in Europe and the United States. Accordingly, the study combines meteorological and stock market data by integrating methodologies from both climate science and finance.

View Article and Find Full Text PDF

Inulin Dehydration to 5-HMF in Deep Eutectic Solvents Catalyzed by Acidic Ionic Liquids Under Mild Conditions.

ChemSusChem

January 2025

Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.

Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.

View Article and Find Full Text PDF

The direct electrochemical conversion of bicarbonate solutions (i.e., captured CO) has emerged as a sustainable approach for integrating CO capture and utilization compared to the traditional independent and sequential route.

View Article and Find Full Text PDF

Up-flow anaerobic sludge blanket bioreactor for the production of carboxylates: effect of inocula on process performance and microbial communities.

Bioresour Bioprocess

January 2025

Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.

This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.

View Article and Find Full Text PDF

Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!