Hybrid electrochromic materials were readily synthesized via copolymerization of aniline with p-phenylenediamine-functionalized single-walled carbon nanotubes (SWCNTs) in the presence of poly(styrene sulfonate) (PSS) dopant in an aqueous medium. Polyaniline (PANI)-grafted SWCNTs are formed, and they are uniformly dispersed in the PANI/PSS matrix. Impedance analysis shows that the charge-transfer resistances of the hybrids at all states are reduced drastically with increasing SWCNT loading. With 0.8 wt % SWCNTs, the charge-transfer resistances of the hybrid at +1.5 and -1.5 V are only about 20% and 12% of those of PANI/PSS, respectively, which is due to the greatly increased redox reactivity given by the enhanced electron transport in the hybrid and further doping function of the SWCNTs. The remarkable increase in redox reactivity leads to much enhanced electrochromic contrast from 0.34 for PANI to 0.47 for PANI-SWCNT-0.8%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am101133q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!