Chemical exchange saturation transfer (CEST) imaging is a relatively new magnetic resonance imaging contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic magnetic resonance principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast. In CEST magnetic resonance imaging, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to magnetization transfer contrast, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to magnetization transfer contrast, CEST imaging requires sufficiently slow exchange on the magnetic resonance time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148076 | PMC |
http://dx.doi.org/10.1002/mrm.22761 | DOI Listing |
JCO Clin Cancer Inform
January 2025
Machine Learning Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, FL.
Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
Hospital Universitario HM Montepríncipe, HM Hospitales. Facultad HM. Hospitales de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain.
PLoS One
January 2025
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
Purpose: Treatment of peripheral artery disease (PAD) in the region below the knee (BTK) is dissatisfying as failure of treated target lesions (TLF) is frequent and diagnostic imaging is often challenging. In the BTK-region metallic drug-eluting stents (mDES) yielded best results concerning primary patency (PP), but also annihilate signal in magnetic resonance angiography (MR-A). A recently introduced non-metallic drug eluting bioresorbable Tyrocore® vascular scaffold (deBVS), that offers an option for re-treatment of lesions due to its full degradation within 3-4 years after placement, was investigated with respect to its compatibility with MR-A to unimpededly depict previously treated target lesions.
View Article and Find Full Text PDFJBJS Case Connect
January 2025
Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.
Case: A 16-year-old woman presented with acute on chronic knee pain and instability following a twisting injury. The tibial insertion of the anterior cruciate ligament (ACL) was nonvisualized on magnetic resonance imaging. A cord-like ACL, originating from the lateral intercondylar notch and inserting smoothly into the anterior horn of the intact lateral meniscus, was found on arthroscopy.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!