Previous studies have shown changes in the cyclic AMP response element-binding protein (CREB) signaling pathway in CA1 and CA3 regions of the rostral hippocampus with 10 μg estrogen treatment for 14 days. It appears that estrogen's action on CREB phosphorylation in brain structures depends on other estrogen doses and lengths of treatment. We therefore examined the effects of moderate regimens [2.5 μg estradiol benzoate (EB) for 4 or 14 days] on mean numbers of neuron-specific neuronal protein (NeuN)-positive cells and phosphorylated CREB (pCREB)-positive cells and subregion volume defined by NeuN and pCREB immunolabeling and compared those results with results from the high regimen (10 μg EB for 14 days) in CA1, CA2, and CA3 regions and dorsal (DDG) and ventral (VDG) dentate gyrus and hilus of the hippocampus of ovariectomized rats by stereology. For whole hippocampus, all regimens increased mean neuronal (NeuN) numbers and pCREB-positive cell and volume compared with sesame oil (SO) in CA1, CA2, and CA3 regions, DDG and VDG, and hilus. In rostral hippocampus, however, some hippocampal subregions were not responsive to the high regimen, and the moderate regimens appear to be more effective for increasing mean number of NeuN-positive neurons and pCREB-positive cells and subregion volume. Heterogeneity in responsiveness to estrogen was mainly seen within rostral, but not whole, hippocampal subregions. Our results indicate that responsiveness of cells expressing NeuN and pCREB to different EB regimens may vary depending on the specific region of the hippocampus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077467 | PMC |
http://dx.doi.org/10.1002/jnr.22601 | DOI Listing |
Alzheimers Dement
December 2024
Department of Pharmacology, Central University of Punjab, Bathinda, Bathinda, Punjab, India.
Background: In previous studies, we found that quetiapine activates the AKT signaling which further inhibits the action of GSK3β. Quetiapine has been reported to possess neuroprotective potential in schizophrenia and other neurodegenerative models.
Method: On day 1 and 3, rats received bilateral intracerebroventricular (i.
Alzheimers Dement
December 2024
University of Exeter, Exeter, United Kingdom.
Background: The J20 mouse is an established model of amyloid pathology, exhibiting neuropathological and behavioural symptoms reflective of human Alzheimer's disease (AD). Previous work, conducted by Castanho et al (2020), revealed transcriptomic change in the hippocampus of J20 mice to be associated with the accumulation of amyloid pathology. Here, we investigated the spatial distribution of such transcriptomic changes using novel spatial transcriptomic technology.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Geriatrics, Department of Internal Medicine, University of Sao Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Nitric oxide (NO) is involved in synaptic transmission and cerebral plasticity, playing a role in the memory process. However, in states of brain inflammation, hypoxia, or ischemia, there is induction of inducible nitric oxide synthase (iNOS) expression by astrocytes and pyramidal cells in the brain. Under conditions of chronic activation, there is a decoupling of iNOS dimers, leading to a massive generation of superoxide anion and peroxynitrite, O2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Carnegie Mellon University, Pittsburgh, PA, USA.
Background: The failure of amyloid plaque-reducing drugs to reverse cognitive decline in Alzheimer's disease (AD) has suggested that treatments might be more effective in early or prodromal stages of the disease. However, the progression of synaptic and circuit changes associated with Aβ overexpression, particularly at very early ages, have not been well-characterized. Indeed, evidence from both human and animal studies indicates that brain structure and function might be altered months to years before plaques can be detected.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Globose neurofibrillary tangles (NFTs) are found in subcortical areas of post-mortem brain from individuals with the second most common primary tauopathy, progressive supranuclear palsy (PSP). The degree of cognitive impairment in secondary tauopathies such as Alzheimer's disease (AD) correlates with the presence of NFTs, which originally appear in the entorhinal cortex before spreading throughout the hippocampus. In contrast, the degree of hippocampal tau pathology in PSP is thought to be limited, consistent with the view that cognitive impairment in PSP is predominantly subcortical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!