Productivity and sialylation are two important factors for the production of recombinant glycoproteins in mammalian cell culture. In our previous study, we found that silkworm hemolymph increased the sialylation of recombinant secreted human placental alkaline phosphatase in the insect cells, promoted the transfer of sialic acids onto the glycoprotein oligosaccharides in an in vitro asialofetuin sialylation system, and enhanced recombinant protein production in the Chinese hamster ovary (CHO) cells. These beneficial effects were mainly due to the 30K proteins, which consist of five isoforms. Among the 30K proteins, 30Kc19 was determined to be the major component. In this study, the 30Kc19 gene was introduced into a CHO cell line producing recombinant human erythropoietin, and its effects on productivity and sialylation were investigated. The transient expression of 30Kc19 significantly improved the production and sialylation of EPO. A stable cell line containing 30Kc19 was also established to investigate the effect of 30Kc19 gene expression. The stable expression of 30Kc19 increased the production and sialylation by 102.6% and 87.1%, respectively. The enhanced productivity from 30Kc19 expression is believed to occur because the 30Kc19 protein suppresses the loss of mitochondrial membrane potential and consequently improves the generation of intracellular ATP. In addition, the positive effect of 30Kc19 expression on sialylation is believed to be due to its ability to maintain sialyltransferase activity. In conclusion, 30Kc19 expression is a novel approach to improve the production and sialylation of recombinant glycoproteins in CHO cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.23091DOI Listing

Publication Analysis

Top Keywords

production sialylation
16
30kc19 gene
12
30kc19 expression
12
30kc19
11
sialylation
9
recombinant human
8
chinese hamster
8
hamster ovary
8
gene expression
8
productivity sialylation
8

Similar Publications

Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs).

View Article and Find Full Text PDF

Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology.

Front Immunol

January 2025

Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.

Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research.

View Article and Find Full Text PDF

LC-MS/MS analysis of surface and lysate N-glycans of CHO-K1 cells: Structure, relative quantity, and absolute quantity.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Chinese hamster ovary (CHO)-K1 cells are widely used in biomedical research relevant to cancer, toxicity screening, and viruses, as well as in the production of recombinant proteins for biopharmaceuticals. In this study, liquid chromatography (LC)-electrospray ionization (ESI)-higher energy collisional dissociation (HCD)-tandem mass spectrometry (MS/MS) was used to characterize the surface and lysate N-glycans of CHO-K1 cells and analyze their structures. The relative quantity (%) of each N-glycan and absolute quantity (pmol) of total N-glycans were also obtained.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) present a promising modality for numerous biological and medical applications, including therapeutics. Developing facile methods to engineer EVs is essential to meeting the rapidly expanding demand for various functionalized EVs in these applications. Herein, we developed a technology that integrates enzymatic glycoengineering and microfluidics for effective EV functionalization.

View Article and Find Full Text PDF

In-depth characterization of -glycosylation and sialic acid content in fetal and adult fibrinogen.

Res Pract Thromb Haemost

November 2024

Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.

Background: Fetal fibrinogen is a variant present in neonates. Blood products used in neonates are tailored for adults and do not seamlessly integrate into neonatal clots. Increased sialic acid content has been found in fetal fibrinogen compared with adult fibrinogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!