A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and biological evaluation of a multifunctional SWCNT-AgNPs-DNA/PVA bio-nanofilm. | LitMetric

A bio-nanofilm consisting of a tetrad nanomaterial (nanotubes, nanoparticles, DNA, polymer) was fabricated utilizing in situ reduction and noncovalent interactions and it displayed effective antibacterial activity and biocompatibility. This bio-nanofilm was composed of homogenous silver nanoparticles (AgNPs) coated on single-walled carbon nanotubes (SWCNTs), which were later hybridized with DNA and stabilized in poly(vinyl alcohol) (PVA) in the presence of a surfactant with the aid of ultrasonication. Electron microscopy and bio-AFM (atomic force microscopy) images were used to assess the morphology of the nanocomposite (NC) structure. Functionalization and fabrication were examined using FT-Raman spectroscopy by analyzing the functional changes in the bio-nanofilm before and after fabrication. UV-visible spectroscopy and X-ray powder diffraction (XRD) confirmed that AgNPs were present in the final NC on the basis of its surface plasmon resonance (370 nm) and crystal planes. Thermal gravimetric analysis was used to measure the percentage weight loss of SWCNT (17.5%) and final SWCNT-AgNPs-DNA/PVA (47.7%). The antimicrobial efficiency of the bio-nanofilm was evaluated against major pathogenic organisms. Bactericidal ratios, zone of inhibition, and minimum inhibitory concentration were examined against gram positive and gram negative bacteria. A preliminary cytotoxicity analysis was conducted using A549 lung cancer cells and IMR-90 fibroblast cells. Confocal laser microscopy, bio-AFM, and field emission scanning electron microscopy (FE-SEM) images demonstrated that the NCs were successfully taken up by the cells. These combined results indicate that this bio-nanofilm was biocompatible and displayed antimicrobial activity. Thus, this novel bio-nanofilm holds great promise for use as a multifunctional tool in burn therapy, tissue engineering, and other biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-011-4757-1DOI Listing

Publication Analysis

Top Keywords

electron microscopy
8
microscopy bio-afm
8
bio-nanofilm
7
structural biological
4
biological evaluation
4
evaluation multifunctional
4
multifunctional swcnt-agnps-dna/pva
4
swcnt-agnps-dna/pva bio-nanofilm
4
bio-nanofilm bio-nanofilm
4
bio-nanofilm consisting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!