We have previously developed micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and delivery of cyclosporine A (CsA). These micelles were able to reduce the renal uptake and nephrotoxicity of CsA. The purpose of the current study was to test the efficacy of polymeric micellar formulation of CsA (PM-CsA) in suppressing immune responses by either T cells or dendritic cells (DCs). The performance of PM-CsA was compared to that of the commercially available formulation of CsA (Sandimmune®). Our results demonstrate that PM-CsA could exert a potent immunosuppressive effect similar to that of Sandimmune® both in vitro and in vivo. Both formulations inhibited phenotypic maturation of DCs and impaired their allostimulatory capacity. Furthermore, both PM-CsA and Sandimmune® have shown similar dose-dependent inhibition of in vitro T cell proliferative responses. A similar pattern was observed in the in vivo study, where T cells isolated from both PM-CsA-treated and Sandimmune®-treated mice have shown impairment in their proliferative response and IFN-γ production at similar levels. These results highlight the potential of polymeric micelles to serve as efficient vehicles for the delivery of CsA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085702PMC
http://dx.doi.org/10.1208/s12248-011-9259-8DOI Listing

Publication Analysis

Top Keywords

polymeric micellar
8
micellar formulation
8
vitro vivo
8
formulation csa
8
csa
5
immunosuppressive activity
4
activity polymeric
4
formulation cyclosporine
4
cyclosporine vitro
4
vivo studies
4

Similar Publications

Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs.

Vaccines (Basel)

December 2024

Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.

The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.

View Article and Find Full Text PDF

We propose a modular addition strategy-regulated polymerization-induced self-assembly (PISA) system to effectively control the reaction kinetics and self-assembly morphologies. We validated this strategy by performing experiments on a well-established PISA system. Two categories of modular addition strategies, , the multistep addition strategy and the constant rate addition strategy, were investigated.

View Article and Find Full Text PDF

Usnic acid (UA) is one of the most abundant secondary metabolites of lichens. Its antibacterial, anti-inflammatory, antiviral, and antitumor properties make it one of the few commercially available lichens compounds. Owing to its low solubility it has limited application, for that reason encapsulation in polymeric micelles (UA-PM) has been used to solve this aspect.

View Article and Find Full Text PDF

Preparation of nano(micro)particles from Cotinus coggygria scop. Extracts and investigation of their antimicrobial effects in vivo Caenorhabditis elegans model.

Microb Pathog

January 2025

Trakya University, Faculty of Science, Department of Biology, Department of Basic and Industrial Microbiology, Edirne, Türkiye. Electronic address:

Cotinus coggygria Scop. (Anacardiaceae) is traditionally used in Türkiye for wound and burn treatment. A series of nano/micro-sized polymeric particles were prepared from aqueous and ethanol extracts of Cotinus coggygria leaves by reverse micellar microemulsion polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!