A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of single water molecules with silanols in mesoporous silica. | LitMetric

AI Article Synopsis

  • - The study utilized Deep Inelastic Neutron Scattering (DINS) to analyze water confined in mesoporous silica at room temperature, focusing on the interactions between water protons and silanol groups on the surface.
  • - Researchers controlled water adsorption to achieve a 1:1 ratio of water molecules to silanol groups, allowing for a precise measurement of the system's proton dynamics and organization.
  • - The findings indicate that the hydrogen bonds formed between water protons and the silanol oxygen are significantly stronger than those found in bulk water, suggesting unique structural properties in confined water environments.

Article Abstract

Deep Inelastic Neutron Scattering measurements of water confined in mesoporous silica have been carried out. The experiment has been performed at room temperature on dry and on hydrated samples in order to investigate the interaction between the protons and the silanol groups of the confining surface. With this aim we could control the hydration of the pores in such a way as to adsorb 3.0 water molecules per nm(2), corresponding to a 1 to 1 ratio with the silanol groups of the surface. DINS measurements directly measure the mean kinetic energy and the momentum distribution of the protons. A detailed analysis of the hydrated sample has been performed in order to separate the contributions of the protons in the system, allowing us to determine the arrangement of water molecules on the silanol groups. We find that the hydrogen bond of the water proton with the oxygen of the silanol group is much stronger than the hydrogen bonds of bulk water.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp02479aDOI Listing

Publication Analysis

Top Keywords

water molecules
12
silanol groups
12
mesoporous silica
8
water
6
interaction single
4
single water
4
molecules silanols
4
silanols mesoporous
4
silica deep
4
deep inelastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!