Lymphoid cells that express the nuclear hormone receptor RORγt are involved in containment of the large intestinal microbiota and defense against pathogens through the production of interleukin 17 (IL-17) and IL-22. They include adaptive IL-17-producing helper T cells (T(H)17 cells), as well as innate lymphoid cells (ILCs) such as lymphoid tissue-inducer (LTi) cells and IL-22-producing NKp46+ cells. Here we show that in contrast to T(H)17 cells, both types of RORγt+ ILCs constitutively produced most of the intestinal IL-22 and that the symbiotic microbiota repressed this function through epithelial expression of IL-25. This function was greater in the absence of adaptive immunity and was fully restored and required after epithelial damage, which demonstrates a central role for RORγt+ ILCs in intestinal homeostasis. Our data identify a finely tuned equilibrium among intestinal symbionts, adaptive immunity and RORγt+ ILCs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.2002DOI Listing

Publication Analysis

Top Keywords

lymphoid cells
12
rorγt+ ilcs
12
innate lymphoid
8
cells
8
intestinal homeostasis
8
symbiotic microbiota
8
th17 cells
8
adaptive immunity
8
intestinal
5
rorγt+
4

Similar Publications

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

Anaemia and thrombocytopenia are blood-related irregularities linked to an increased likelihood of disease progression, leading to death in people living with human immunodeficiency virus 1 (PLHIV). Severe clinical conditions associated with human immunodeficiency 1 (HIV-1) infection may be related to blood irregularities among PLHIV. The study aimed to examine the factors correlated with blood irregularities among PLHIV receiving antiretroviral treatment in West Papua.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!