Background: Spinal muscular atrophy is a common autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. Identification of spinal muscular atrophy carriers has important implications for individuals with a family history of the disorder and for genetic counseling. The aim of this study was to determine the frequency of carriers in a sample of the nonconsanguineous Brazilian population by denaturing high-performance liquid chromatography (DHPLC).

Methods: To validate the method, we initially determined the relative quantification of DHPLC in 28 affected patients (DHPLC values: 0.00) and 65 parents (DHPLC values: 0.49-0.69). Following quantification, we studied 150 unrelated nonconsanguineous healthy individuals from the general population.

Results: Four of the 150 healthy individuals tested (with no family history of a neuromuscular disorder) presented a DHPLC value in the range of heterozygous carriers (0.6-0.68).

Conclusions: Based on these results, we estimated there is a carrier frequency of 2.7% in the nonconsanguineous Brazilian population, which is very similar to other areas of the world where consanguineous marriage is not common. This should be considered in the process of genetic counseling and risk calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000324156DOI Listing

Publication Analysis

Top Keywords

spinal muscular
12
muscular atrophy
12
brazilian population
12
atrophy carriers
8
carriers sample
8
neuromuscular disorder
8
family history
8
genetic counseling
8
nonconsanguineous brazilian
8
dhplc values
8

Similar Publications

Purpose: the purpose of this study was to evaluate the safety and usability of the ATLAS 2030 in children with Cerebral Palsy (CP) and Spinal Muscular Atrophy (SMA).

Materials And Methods: the sample consisted of six children, three with CP and three with SMA, who received eight sessions of robot-assisted gait therapy. Safety was measured by the presence of adverse events.

View Article and Find Full Text PDF

UBA1 is an E1 ubiquitin-activating enzyme that initiates the ubiquitylation of target proteins and is thus a key component of the ubiquitin signaling pathway. Three disorders are associated with pathogenic variants of the UBA1 gene: vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, lung cancer in never smokers (LCINS), and X-linked spinal muscular atrophy (XL-SMA, SMAX2). We here report a case of infantile respiratory distress syndrome followed by continuing neuromuscular symptoms.

View Article and Find Full Text PDF

Background: The evidence on the link between cardiometabolic diseases (CMDs) and motor neuron diseases (MNDs) remains inconsistent. We aimed to determine whether there is an association of CMDs, namely, any cardiovascular disease, cardiac arrhythmia, heart failure, thromboembolic disease, hypertension, cerebrovascular disease, ischemic heart disease, diabetes mellitus type 2, and hypercholesterolemia with the risk and progression of MNDs.

Methods: We included 1463 MND patients (amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS), progressive spinal muscular atrophy (PSMA), and unspecified MND) diagnosed from January 1, 2015, to July 1, 2023, in Sweden according to the Swedish Motor Neuron Disease Quality Registry (i.

View Article and Find Full Text PDF

Background: Due to improved treatment options, more SMA patients reach childbearing age. Currently, limited data on pregnant SMA patients is available, especially in relation to disease-modifying therapies (DMT). This case report helps to elucidate new approaches for future guidelines in the management of pregnancy and SMA.

View Article and Find Full Text PDF

Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!