Thermal conductivity of ionic systems from equilibrium molecular dynamics.

J Phys Condens Matter

UPMC Univ-Paris06 and CNRS, UMR 7195, PECSA, F-75005, Paris, France.

Published: March 2011

AI Article Synopsis

  • The study calculates the thermal conductivities of ionic compounds like NaCl, MgO, and Mg(2)SiO(4) using advanced simulations and the Green-Kubo method, focusing on their behavior under various conditions.
  • Transferable interaction potentials that account for many-body polarization effects are utilized to analyze both solid and liquid states at high temperatures and pressures, relevant to the Earth's mantle.
  • A frequency-dependent thermal conductivity is introduced, revealing significant coupled thermoelectric effects that influence energy conduction in liquid systems.

Article Abstract

Thermal conductivities of ionic compounds (NaCl, MgO, Mg(2)SiO(4)) are calculated from equilibrium molecular dynamics simulations using the Green-Kubo method. Transferable interaction potentials including many-body polarization effects are employed. Various physical conditions (solid and liquid states, high temperatures, high pressures) relevant to the study of the heat transport in the Earth's mantle are investigated, for which experimental measures are very challenging. By introducing a frequency-dependent thermal conductivity, we show that important coupled thermoelectric effects occur in the energy conduction mechanism in the case of liquid systems.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/23/10/102101DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
8
equilibrium molecular
8
molecular dynamics
8
conductivity ionic
4
ionic systems
4
systems equilibrium
4
dynamics thermal
4
thermal conductivities
4
conductivities ionic
4
ionic compounds
4

Similar Publications

This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.

View Article and Find Full Text PDF

Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.

View Article and Find Full Text PDF

Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.

View Article and Find Full Text PDF

Silicon carbide-based titanium silicon carbide (SiC-TiSiC) composites with low free alloy content and varying TiSiC contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi alloy in SiC-C preforms obtained. The densities of SiC-C preform are tailored by the carbon morphology and volumetric shrinkage of slurry during the gel-casting process, and pure composites with variable TiSiC volume contents are successfully fabricated with different carbon contents of the preforms. Due to the increased TiSiC content in the obtained composites, both electrical conductivity and electromagnetic interference (EMI) shielding effectiveness improved progressively, while skin depth exhibited decreased consistently.

View Article and Find Full Text PDF

Interphase Influence on the Effective Thermal Conductivity Coefficients of Fiber Composites.

Materials (Basel)

December 2024

Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.

This study proposes a two-scale approach to determining the effective thermal conductivity of fibrous composite materials. The analysis was first carried out at the fiber-interphase level to calculate the effective thermal conductivity of this system, and next at the whole composite structure level. At both scales, the system behavior was analyzed using the finite element method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!