Acetylcholine regulates perfusion of numerous organs via changes in local blood flow involving muscarinic receptor-induced release of vasorelaxing agents from the endothelium. The purpose of the present study was to determine the role of M₁, M₃, and M₅ muscarinic acetylcholine receptors in vasodilation of small arteries using gene-targeted mice deficient in either of the three receptor subtypes (M1R(-/-), M3R(-/-), or M5R(-/-) mice, respectively). Muscarinic receptor gene expression was determined in murine cutaneous, skeletal muscle, and renal interlobar arteries using real-time PCR. Moreover, respective arteries from M1R(-/-), M3R(-/-), M5R(-/-), and wild-type mice were isolated, cannulated with micropipettes, and pressurized. Luminal diameter was measured using video microscopy. mRNA for all five muscarinic receptor subtypes was detected in all three vascular preparations from wild-type mice. However, M(3) receptor mRNA was found to be most abundant. Acetylcholine produced dose-dependent dilation in all three vascular preparations from M1R(-/-), M5R(-/-), and wild-type mice. In contrast, cholinergic dilation was virtually abolished in arteries from M3R(-/-) mice. Deletion of either M₁, M₃, or M₅ receptor genes did not affect responses to nonmuscarinic vasodilators, such as substance P and nitroprusside. These findings provide the first direct evidence that M₃ receptors mediate cholinergic vasodilation in cutaneous, skeletal muscle, and renal interlobar arteries. In contrast, neither M₁ nor M₅ receptors appear to be involved in cholinergic responses of the three vascular preparations tested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094072PMC
http://dx.doi.org/10.1152/ajpheart.00982.2010DOI Listing

Publication Analysis

Top Keywords

wild-type mice
12
three vascular
12
vascular preparations
12
muscarinic acetylcholine
8
acetylcholine receptors
8
cholinergic dilation
8
small arteries
8
gene-targeted mice
8
m₁ m₃
8
m₃ m₅
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!