Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles.

Cell

Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, 92093, USA.

Published: February 2011

Kinesin and dynein are opposite-polarity microtubule motors that drive the tightly regulated transport of a variety of cargoes. Both motors can bind to cargo, but their overall composition on axonal vesicles and whether this composition directly modulates transport activity are unknown. Here we characterize the intracellular transport and steady-state motor subunit composition of mammalian prion protein (PrP(C)) vesicles. We identify Kinesin-1 and cytoplasmic dynein as major PrP(C) vesicle motor complexes and show that their activities are tightly coupled. Regulation of normal retrograde transport by Kinesin-1 is independent of dynein-vesicle attachment and requires the vesicle association of a complete Kinesin-1 heavy and light chain holoenzyme. Furthermore, motor subunits remain stably associated with stationary as well as with moving vesicles. Our data suggest a coordination model wherein PrP(C) vesicles maintain a stable population of associated motors whose activity is modulated by regulatory factors instead of by structural changes to motor-cargo associations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576050PMC
http://dx.doi.org/10.1016/j.cell.2011.01.021DOI Listing

Publication Analysis

Top Keywords

kinesin dynein
8
mammalian prion
8
prion protein
8
prpc vesicles
8
transport
5
vesicles
5
stable kinesin
4
dynein assemblies
4
assemblies drive
4
drive axonal
4

Similar Publications

Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.

View Article and Find Full Text PDF

KIF1C activates and extends dynein movement through the FHF cargo adapter.

Nat Struct Mol Biol

January 2025

Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.

Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins.

View Article and Find Full Text PDF

Acidic pH of Early Endosomes Governs SARS-CoV-2 Transport in Host Cells.

J Biol Chem

December 2024

Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:

Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.

View Article and Find Full Text PDF

Multicolor Tracking of Molecular Motors at Nanometer Resolution.

Methods Mol Biol

December 2024

Department of Physics, University of California, Berkeley, CA, USA.

Molecular motors move processively along cytoskeletal filaments by stepping of their motor domains (MDs). Observation of how the MDs step relative to each other reveals the mechanism of motor processivity and various gating mechanisms used by motors to coordinate the catalytic cycles of their MDs. This chapter will discuss developments in simultaneous observation of the stepping motions of the two MDs of processive motors using two-color single-particle tracking microscopy.

View Article and Find Full Text PDF

DNA tensiometer reveals catch-bond detachment kinetics of kinesin-1, -2 and -3.

bioRxiv

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.

Bidirectional cargo transport by kinesin and dynein is essential for cell viability and defects are linked to neurodegenerative diseases. The competition between motors is described as a tug-of-war, and computational modeling suggests that the load-dependent off-rate is the strongest determinant of which motor 'wins'. Optical tweezer experiments find that the load-dependent detachment sensitivity of transport kinesins is kinesin-3 > kinesin-2 > kinesin-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!