In the present work, DNaseI loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for pulmonary delivery were prepared using emulsion solvent evaporation. The effects of the various formulation and experimental variables on the size and morphological characteristics of the particles as well as on the encapsulation efficiency were investigated. The stability of the encapsulated DNaseI was evaluated and the respirable fraction was determined. Cytotoxicity of the NPs was evaluated on lung epithelial cells. The results showed that by using leucine and dipalmito-phosphatidyl-choline (DPPC), discrete NPs with 76% retained biological activity were prepared. A high respirable fraction (particles below 6 μm) reaching 71.3% was achieved after nebulization of the NP suspension. The results revealed the suitability of the prepared particles for pulmonary delivery and highlighted the role of excipients in the stabilization of DNaseI against the stresses encountered during preparation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2011.02.013 | DOI Listing |
Biomater Sci
August 2024
The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
The aim of this study was to develop a semi-interpenetrating network (IPN) hydrogel system suitable for the oral environment, capable of controlled release of DNase-I and oridonin (ORI), to exert antimicrobial, anti-inflammatory, and reparative effects on chemoradiotherapy-induced oral mucositis (OM). This IPN was based on the combination of ε-polylysine (PLL) and hetastarch (HES), loaded with DNase-I and ORI (ORI/DNase-I/IPN) for OM treatment. studies were conducted to evaluate degradation, adhesion, release analysis, and bioactivity including cell proliferation and wound healing assays using epidermal keratinocyte and fibroblast cell lines.
View Article and Find Full Text PDFAdv Mater
February 2024
Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China.
Reinforced biofilm structures and dysfunctional neutrophils induced by excessive oxidative stress contribute to the refractoriness of diabetes-related biofilm infections (DRBIs). Herein, in contrast to traditional antibacterial therapies, an immune switchpoint-driven neutrophil immune function conversion strategy based on a deoxyribonuclease I loaded vanadium carbide MXene (DNase-I@V C) nanoregulator is proposed to treat DRBIs via biofilm lysis and redirecting neutrophil functions from NETosis to phagocytosis in diabetes. Owing to its intrinsic superoxide dismutase/catalase-like activities, DNase-I@V C effectively scavenges reactive oxygen species (ROS) in a high oxidative stress microenvironment to maintain the biological activity of DNase-I.
View Article and Find Full Text PDFJ Med Virol
October 2023
Clinical Virology, University Hospital Basel, Basel, Switzerland.
Management of cytomegalovirus (CMV) in transplant patients relies on measuring plasma CMV-loads using quantitative nucleic acid testing (QNAT). We prospectively compared the automated Roche-cobas®6800-CMV and Roche-CAP/CTM-CMV with laboratory-developed Basel-CMV-UL54-95bp, and Basel-CMV-UL111a-77bp. Roche-cobas®6800-CMV and Roche-CAP/CTM-CMV were qualitatively concordant in 142/150 cases (95%).
View Article and Find Full Text PDFJ Infect Dis
April 2023
Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.
Background: High-level BK polyomavirus (BKPyV) replication in allogeneic hematopoietic cell transplantation (HCT) predicts failing immune control and BKPyV-associated hemorrhagic cystitis.
Methods: To identify molecular markers of BKPyV replication and disease, we scrutinized BKPyV DNA-loads in longitudinal urine and plasma pairs from 20 HCT patients using quantitative nucleic acid testing (QNAT), DNase-I treatment prior to QNAT, next-generation sequencing (NGS), and tested cell-mediated immunity.
Results: We found that larger QNAT amplicons led to under-quantification and false-negatives results (P < .
Mol Pharm
September 2019
Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU), Varanasi 221005 , India.
Biofilm resistance is one of the severe complications associated with chronic wound infections, which impose extreme microbial tolerance against antibiotic therapy. Interestingly, deoxyribonuclease-I (DNase-I) has been empirically proved to be efficacious in improving the antibiotic susceptibility against biofilm-associated infections. DNase-I hydrolyzes the extracellular DNA, a key component of the biofilm responsible for the cell adhesion and strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!