The formation equilibrium of poly(amidoamine) dendrimer (PAMAM-NH₂ G4) complex with an oncologic drug such as 5-fluorouracil (5-FU) in water at room temperature was examined. Using the results of the drug solubility in dendrimer solutions and the method of equilibrium dialysis, the maximal number of drug molecules in the dendrimer-drug complex and its equilibrium constant were evaluated. Solubility results show that PAMAM-NH₂ G4 dendrimer can transfer tens 5-fluorouracil molecules in aqueous solution. The number of active sites in a dendrimer macromolecule being capable of combining the drug, determined by the separation method, amounts to n=30 ± 4. The calculated equilibrium constant of the 5-FU-active site bonding is equal to K=(400 ± 120).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2011.02.014DOI Listing

Publication Analysis

Top Keywords

pamam-nh₂ dendrimer
8
aqueous solution
8
equilibrium constant
8
dendrimer
5
interaction pamam-nh₂
4
dendrimer 5-fluorouracil
4
5-fluorouracil aqueous
4
solution formation
4
equilibrium
4
formation equilibrium
4

Similar Publications

Recent emerging trends in dendrimer research: Electrochemical sensors and their multifaceted applications in biomedical fields or healthcare.

Biosens Bioelectron

January 2025

Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye. Electronic address:

Dendrimers enhance the selectivity and sensitivity of sensors through their synthetic, highly branched, three-dimensional structures and large surface area. This unique architecture enables precise functionalization with various recognition elements, significantly improving the specificity and sensitivity of electrochemical sensors for detecting disease markers, biomolecules, and environmental pollutants. Dendrimer-based electrochemical sensors offer promising advancements in healthcare, such as detecting biomarkers for heart disease, monitoring blood glucose levels, and sensitively determining cancer-related proteins.

View Article and Find Full Text PDF

Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation.

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Organelle-Targeting Nanoparticles.

Adv Sci (Weinh)

January 2025

Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.

Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.

View Article and Find Full Text PDF

The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!