Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The venom of the North African scorpion Androctonus amoreuxi (Aam) was analyzed using a combination of gel filtration, C18 reverse phase HPLC together with mass spectrometry analysis and bioassays. Three novel Birtoxin-like (BTX-L) peptides of 58 amino acid residues comprising three disulfide bridges were isolated and chemically characterized. One peptide, AamBTX-L3, induced serious toxic symptoms in mice and was lethal at nanogram quantities using intracerebroventricular injection. The three BTX-L peptides were tested in competition experiments on rat brain synaptosomes against the (125)I-labeled "classical" α- and β-toxins of reference, as well as with the (125)I-KTX, a voltage-gated potassium channel blocker. Only AamBTX-L3 was able to prevent the equilibrium binding of the β-toxin (125)I-Css IV to its receptor site 4 with a IC(50) value of 189 nM. Even if previous electrophysiological data allowed the classification of other BTX-L peptides among the β-type toxins, this report clearly shows that AamBTX-L3 is pharmacologically a β-toxin, which recognizes the voltage-gated Na(+) (Na(v)) channels from central mammalian neurons. In order to uncover the residues functionally essential for interaction between the AamBTX-L3 with the putative receptor site of (125)I-Css IV on Na(v)1.2, molecular models of the three novel Aam BTX-L molecules were made and their surfaces were compared to the already described Css IV biologically interactive surfaces. A hypothesis is given that in BTX-L3, three residues found in the α-helix play a key role during target binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2011.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!