Discovery of histone deacetylase 8 selective inhibitors.

Bioorg Med Chem Lett

Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA.

Published: May 2011

We have developed an efficient method for synthesizing candidate histone deacetylase (HDAC) inhibitors in 96-well plates, which are used directly in high-throughput screening. We selected building blocks having hydrazide, aldehyde and hydroxamic acid functionalities. The hydrazides were coupled with different aldehydes in DMSO. The resulting products have the previously identified 'cap/linker/biasing element' structure known to favor inhibition of HDACs. These compounds were assayed without further purification. HDAC8-selective inhibitors were discovered from this novel collection of compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403710PMC
http://dx.doi.org/10.1016/j.bmcl.2011.01.134DOI Listing

Publication Analysis

Top Keywords

histone deacetylase
8
discovery histone
4
deacetylase selective
4
selective inhibitors
4
inhibitors developed
4
developed efficient
4
efficient method
4
method synthesizing
4
synthesizing candidate
4
candidate histone
4

Similar Publications

Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis.

View Article and Find Full Text PDF

Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.

Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.

View Article and Find Full Text PDF

Sirtuin 2 exacerbates renal tubule injury and inflammation in diabetic mice via deacetylation of c-Jun/c-Fos.

Cell Mol Life Sci

January 2025

Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.

Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients.

View Article and Find Full Text PDF

Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.

Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.

View Article and Find Full Text PDF

Recent therapeutic strategies have highlighted the potential of β-hydroxybutyrate (BHB) and α-ketoglutarate (α-KG) as effective anticancer agents, particularly for colon cancer. These metabolites can modulate cellular metabolism and induce epigenetic changes, inhibiting tumor growth. Nonetheless, certain cancer cells may utilize ketone bodies, like BHB as nutrient sources under hypoxic conditions, potentially reducing treatment efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!