Objective: To report a case of successful paternity from a male homozygous for 5α-reductase-2 deficiency.
Design: Case report.
Setting: Academic center, division of reproductive endocrinology.
Patient(s): A 45-year-old Dominican man and his 32-year-old wife.
Intervention(s): In vitro fertilization and intracytoplasmic sperm injection.
Main Outcome Measure(s): Pregnancy.
Result(s): Viable twin gestation.
Conclusion(s): Men homozygous for 5α-reductase-2 deficiency can achieve biologic paternity through in vitro fertilization with intracytoplasmic sperm injection despite severely abnormal semen parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fertnstert.2011.01.121 | DOI Listing |
Int J Mol Sci
December 2024
Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar.
Deficits in social communication, restricted interests, and repetitive behaviours are hallmarks of autism spectrum disorder (ASD). Despite high genetic heritability, the majority of clinically diagnosed ASD cases have unknown genetic origins. We performed genome sequencing on mothers, fathers, and affected individuals from 104 families with ASD in Oman, a Middle Eastern country underrepresented in international genetic studies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy.
This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the gene linked to neurosensorial hearing loss.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia.
Bruck syndrome is a rare autosomal recessive disorder characterized by increased bone fragility and joint contractures similar to those in arthrogryposis and is known to be associated with mutations in the () and () genes. These genes encode endoplasmic reticulum proteins that play an important role in the biosynthesis of type I collagen, which in turn affects the structure and strength of connective tissues and bones in the body. Mutations are associated with disturbances in both the primary collagen chain and its post-translational formation, but the mechanism by which mutations lead to Bruck syndrome phenotypes has not been determined, not only because of the small number of patients who come to the attention of researchers but also because of the lack of disease models.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
The ( C677T gene polymorphism is associated with neurological disorders and schizophrenia. Patients diagnosed with schizophrenia and schizoaffective disorder and controls ( 134) had data collected for risk factors, molecular and neuro-sensory variables, symptoms, and functional outcomes. Promising gene variant-related predictive biomarkers were identified for diagnosis by Receiver Operating Characteristics and for illness duration by linear regression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!