Djungarian hamsters (Phodopus sungorus) of our breeding stock show three rhythmic phenotypes: wild type (WT) animals which start their activity shortly after "lights-off" and are active until "lights-on"; delayed activity onset (DAO) hamsters whose activity onset is delayed after "lights-off" but activity offset coincides with "lights-on"; and arrhythmic hamsters (AR) that are episodically active throughout the 24-h day. The main aim of the present study was to investigate whether the observed phenotypic differences are caused by an altered output from the suprachiasmatic nuclei (SCN). As a marker of the circadian clock, the body temperature rhythm purified from masking effects due to motor activity was used. Hamsters were kept singly under standardized laboratory conditions (L:D=14:10h, T: 22°C±2°C, food and water ad libitum). Body temperature and motor activity were monitored by means of implanted G2-E-Mitters and the VitalView(®) System (MiniMitter). Each phenotype showed distinctive rhythms of overt activity and body temperature, these two rhythms being very similar for each phenotype. Correcting body temperatures for the effects of activity produced purified temperature rhythms which retained profiles that were distinctive for the phenotype. These results show that the body temperature rhythm is not simply a consequence of the activity pattern but is caused by the endogenous circadian system. The purification method also allowed estimation of thermoregulatory efficiency using the gradients as a measure for the sensitivity of body temperature to activity changes. In WT and DAO hamsters, the gradients were low during activity period and showed two peaks. The first one occurred after "lights-on", the second one preceded the activity onset. In AR hamsters, the gradients did not reveal circadian changes. The results provide good evidence that the different phenotypes result from differences in the circadian clock. In AR hamsters, the SCN do not produce an obvious circadian signal. With regard to DAO hamsters, it remains to be investigated whether the clockwork itself or the afferent entraining pathways are abnormal in comparison with the WT hamsters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2011.02.019 | DOI Listing |
Int J Mol Sci
December 2024
Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain.
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
MicroRNAs (miRNAs) are short sequences of single-stranded non-coding RNAs that target messenger RNAs, leading to their repression or decay. Interestingly, miRNAs play a role in the cellular response to low oxygen levels, known as hypoxia, which is associated with reactive oxygen species and oxidative stress. However, the physiological implications of hypoxia-induced miRNAs ("hypoxamiRs") remain largely unclear.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
The stable physiological structure and rich vascular network of pig ears contribute to distinct thermal characteristics, which can reflect temperature variations. While the temperature of the pig ear does not directly represent core body temperature due to the ear's role in thermoregulation, thermal infrared imaging offers a feasible approach to analyzing individual pig status. Based on this background, a dataset comprising 23,189 thermal infrared images of pig ears (TIRPigEar) was established.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Cell Physiology, Kumamoto University, Kumamoto, Japan.
Transient receptor potential (TRP) channels with temperature sensitivities (thermo-TRPs) are involved in various physiological processes. Thermo-TRPs that detect temperature changes in peripheral sensory neurons possess indispensable functions in thermosensation, eliciting defensive behavior against noxious temperatures and driving autonomic/behavioral thermoregulatory responses to maintain body temperature in mammals. Moreover, most thermo-TRPs are functionally expressed in cells and tissues where the temperature is maintained at a constant core body temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!