Protease inhibitors as possible pitfalls in proteomic analyses of complex biological samples.

J Proteomics

Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA.

Published: June 2011

AI Article Synopsis

  • Sample preparation for mass spectrometry often involves protein and peptide fractionation to simplify complex samples, with trypsin being the most commonly used enzyme for proteolytic digestion.
  • Many studies focus on optimizing tryptic digestion for improved proteomic analysis, but few have explored the negative effects of proteolytic inhibitors on enzyme activity and sample loss.
  • Our research shows that using gel electrophoresis followed by "in-gel" digestion significantly enhances protein identification and sequence coverage compared to "in solution" digestion, highlighting the need for rigorous validation in mass spectrometry methods.

Article Abstract

Sample preparation, especially protein and peptide fractionation prior to identification by mass spectrometry (MS), is typically applied to reduce sample complexity. The second key element in this process is proteolytic digestion, which is performed most often with trypsin. Optimization of this step is an important factor in order to achieve both speed and better performance of proteomic analysis, and tryptic digestion prior to the MS analysis has been a topic of many studies. To date, only a few studies have paid attention to the negative interaction between the proteolytic enzyme and sample components, and sample losses caused by these interactions. In this study, we demonstrated impaired activity after "in solution" tryptic digestion of plasma proteins caused by a potent trypsin inhibitor family, inter-alpha inhibitor proteins. Sample boiling followed by gel electrophoretic separation and "in-gel" digestion drastically improved both the number of identified proteins and the sequence coverage in subsequent LC-ESI-MS/MS. The present investigations show that a thorough validation is necessary when "in solution" digestion followed by LC-MS analysis of complex biological samples is performed. The parallel use of two or more different mass spectrometers can also yield additional information and contribute to further method validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107918PMC
http://dx.doi.org/10.1016/j.jprot.2011.02.010DOI Listing

Publication Analysis

Top Keywords

complex biological
8
biological samples
8
tryptic digestion
8
"in solution"
8
sample
5
digestion
5
protease inhibitors
4
inhibitors pitfalls
4
pitfalls proteomic
4
proteomic analyses
4

Similar Publications

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

NIST Mass Spectral Libraries in the Context of the Circular Economy of Plastics.

J Am Soc Mass Spectrom

January 2025

Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899, United States.

The Mass Spectrometry Data Center (MSDC) has recently started improving existing libraries and creating new ones for identifying and analyzing plastics-related compounds (PRC) and materials (PRM) as part of the NIST circular economy program. PRC are small molecules of dissimilar chemical nature; hence, to increase coverage, we have used three types of ionizations: EI, ESI, and APCI. PRM are solids that include polymers, polymer mixtures, and commercial plastics, so we have used pyrolysis-gas chromatography (py-GC-MS) to create a new searchable library.

View Article and Find Full Text PDF

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Tc toxins are pore-forming virulence factors of many pathogenic bacteria. Following pH-induced conformational changes, they perforate the target membrane like a syringe to translocate toxic enzymes into a cell. Although this complex transformation has been structurally well studied, the reaction pathway and the resulting temporal evolution have remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!