A detailed comparative examination of microtubule (MT) organization in interphase and dividing cells of Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus was made using tubulin immunofluorescence and transmission electron microscopy (TEM). During interphase all the species bear a well-organized cortical MT system, consisting of parallel bundles with different orientations. In Uronema sp. the cortical MT bundles are longitudinally oriented, whereas in the other species they are in transverse orientation to the axis of the cells. Considerable differences in MT organization were also observed during stages of mitosis, mainly preprophase, as well as cytokinesis. In Uronema sp., a particular radial MT assembly is organized during preprophase-early prophase, which was not observed in the other species. In Stichococcus a fine MT ring surrounded the nucleus during preprophase and prophase. An MT ring, together with single cytoplasmic MTs, was also found associated with the developing diaphragm during cytokinesis in Stichococcus. A phycoplast participates in cytokinesis in Uronema sp., but not in the other species. In Uronema sp. the centrosome functions as a microtubule organizing center (MTOC) during mitosis, but not during interphase and cytokinesis. The phylogenetic significance of these differences is discussed in combination with SSU/ITS sequencing and other, existing molecular data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.protis.2010.10.004DOI Listing

Publication Analysis

Top Keywords

microtubule organization
8
uronema klebsormidium
8
klebsormidium flaccidum
8
flaccidum subtilissimum
8
subtilissimum stichococcus
8
stichococcus bacillaris
8
bacillaris chloranthus
8
cytokinesis uronema
8
uronema
6
comparative immunofluorescence
4

Similar Publications

Kinetochores get a grip!

J Cell Biol

January 2025

Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.

A new study by Larson and colleagues (2025. J. Cell Biol.

View Article and Find Full Text PDF

A Ralstonia solanacearum type III effector alters the actin and microtubule cytoskeleton to promote bacterial virulence in plants.

PLoS Pathog

December 2024

Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America.

Cellular responses to biotic stress frequently involve signaling pathways that are conserved across eukaryotes. These pathways include the cytoskeleton, a proteinaceous network that senses external cues at the cell surface and signals to interior cellular components. During biotic stress, dynamic cytoskeletal rearrangements serve as a platform from which early immune-associated processes are organized and activated.

View Article and Find Full Text PDF

Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.

Dev Cell

December 2024

Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:

Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.

View Article and Find Full Text PDF

Septin 9 (SEPT9), a GTPase, known as the fourth cytoskeleton, is widely expressed in various cells and tissues. The functions of SEPT9 are partly similar to other cytoskeletons as a structure protein. Further, SEPT9 can interact with other cytoskeletons, participating in actin dynamics and microtubule regulation.

View Article and Find Full Text PDF

Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!