Objective: The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions.

Methods: An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving.

Results: Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters.

Conclusions: EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power.

Significance: It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2010.10.044DOI Listing

Publication Analysis

Top Keywords

alpha spindle
20
eeg alpha
12
driver fatigue
12
fatigue real
12
real traffic
12
traffic conditions
12
alpha spindles
12
fatigue
8
alpha
8
assessing driver
8

Similar Publications

Dermatofibrosarcoma protuberans arising in the lower labial mucosa: a case report and literature review.

Int J Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, Tsukuba Gakuen Hospital, Tsukuba, Ibaraki, Japan.

Dermatofibrosarcoma protuberans (DFSP) is a low-grade, malignant, spindle cell tumour with an infiltrative growth pattern and a high local recurrence rate. Cases of oral DFSP are rare. This report describes a case of DFSP occurring in the labial mucosa.

View Article and Find Full Text PDF

Perivascular epithelioid cell tumors (PEComas) belong to a family of rare mesenchymal tumors composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. Li-Fraumeni syndrome (LFS), an autosomal dominant cancer predisposition syndrome, is caused by a germline variant of the tumor suppressor gene TP53. Here, we report the case of a 20-year-old woman with LFS who developed a PEComa of the liver.

View Article and Find Full Text PDF

Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders.

Ann Clin Transl Neurol

January 2025

Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.

Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.

View Article and Find Full Text PDF

Dermatofibrosarcoma protuberans (DFSP) is an intermediate-grade fibroblastic neoplasm commonly seen in young and middle-aged patients and rarely in pediatric patients. Fibrosarcomatous transformation is common in adults but extremely uncommon in children. Here, we present a case of a 2-year-old child who presented with a progressively enlarging subcutaneous mass in the knee.

View Article and Find Full Text PDF

Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.

Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!