In the present work the hydrogenesis in the anaerobic alkalithermophilic bacterium Thermobrachium celere was studied. The impact of several factors on hydrogen production during glucose fermentation was investigated in batch conditions. The optimal hydrogen production occurred at pH (67 °C) 8.2 with phosphate buffer concentration of 50 mM. Hydrogen yield reached the highest value of 3.36 mol H2/mol glucose when the partial pressure in the gas headspace was reduced. Supplementation of nitrogen sources and iron affected hydrogen production. Under optimized conditions, the maximum H2 accumulation and H2 production rate were estimated to be respectively 124.3 mmol H2/l culture and 20.7 mmol H2/l/h. Considering the efficient and rapid hydrogen evolution, and the ability to grow in extreme environments, T. celere might be a good candidate for biohydrogen production in open (non-sterile) bioprocess system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2011.01.028 | DOI Listing |
BMC Plant Biol
January 2025
Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Federal University of Paraná, Curitiba, 81531-980, Brazil.
Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.
View Article and Find Full Text PDFNat Commun
January 2025
School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.
Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.
View Article and Find Full Text PDFChem Asian J
January 2025
Fudan University, Department of Chemistry, 2005# Songhu RD., 200438, Shanghai, CHINA.
Traditional photocatalysts often have limited efficiency due to the high recombination rate of photogenerated electron-hole pairs. In this work, we synthesized 3D/2D ZnSe-MXene heterojunctions by an in situ electrostatic self-assembly method. Notably, the 3% MXene-ZnSe composite exhibited an optimized photocatalytic hydrogen production rate of 765.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!