Background: Autophagy plays a crucial role in controlling various biological responses including starvation, homeostatic turnover of long-lived proteins, and invasion of bacteria. However, a role for autophagy in development and/or function of mast cells is unknown.
Objective: To investigate a role for autophagy in mast cells, we generated bone marrow-derived mast cells (BMMCs) from mice lacking autophagy related gene (Atg) 7, an essential enzyme for autophagy induction.
Methods: Bone marrow-derived mast cells were generated from bone marrow cells of control and IFN-inducible Atg7-deficient mice, and morphologic and functional analyses were performed.
Results: We found that conversion of type I to type II light chain (LC3)-II, a hallmark of autophagy, was constitutively induced in mast cells under full nutrient conditions, and LC3-II localized in secretory granules of mast cells. Although deletion of Atg7 did not impair the development of BMMCs, Atg7(-/-) BMMCs showed severe impairment of degranulation, but not cytokine production on FcεRI cross-linking. Intriguingly, LC3-II but not LC3-I was co-localized with CD63, a secretory lysosomal marker, and was released extracellularly along with degranulation in Atg7(+/+) but not Atg7(-/-) BMMCs. Moreover, passive cutaneous anaphylaxis reactions were severely impaired in mast cell-deficient WBB6F1-W/W(V) mice reconstituted with Atg7(-/-) BMMCs compared with Atg7(+/+) BMMCs.
Conclusion: These results suggest that autophagy is not essential for the development but plays a crucial role in degranulation of mast cells. Thus, autophagy might be a potential target to treat allergic diseases in which mast cells are critically involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2010.12.1078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!