Cloning, expression and characterization of a new aspartate aminotransferase from Bacillus subtilis B3.

FEBS J

Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China.

Published: April 2011

In the present study, we report the identification of a new gene from the Bacillus subtilis B3 strain (aatB3), which comprises 1308 bp encoding a 436 amino acid protein with a monomer molecular weight of 49.1 kDa. Phylogenetic analyses suggested that this enzyme is a member of the Ib subgroup of aspartate aminotransferases (AATs; EC 2.6.1.1), although it also has conserved active residues and thermostability characteristic of Ia-type AATs. The Asp232, Lys270 and Arg403 residues of AATB3 play a key role in transamination. The enzyme showed maximal activity at pH 8.0 and 45 °C, had relatively high activity over an alkaline pH range (pH 7.0-9.0) and was stable up to 50 °C. AATB3 catalyzed the transamination of five amino acids, with L-aspartate being the optimal substrate. The K(m) values were determined to be 6.7 mM for L-aspartate, 0.3 mM for α-ketoglutarate, 8.0 mM for L-glutamate and 0.6 mM for oxaloacetate. A 32-residue N-terminal amino acid sequence of this enzyme has 53% identity with that of Bacillus circulans AAT, although it is absent in all other AATs from different organisms. Further studies on AATB3 may confirm that it is potentially beneficial in basic research as well as various industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2011.08054.xDOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
8
amino acid
8
cloning expression
4
expression characterization
4
characterization aspartate
4
aspartate aminotransferase
4
aminotransferase bacillus
4
subtilis study
4
study report
4
report identification
4

Similar Publications

Unlabelled: Antibiotic resistance is a global crisis that stems from the use of antibiotics as an essential part of modern medicine. Understanding how antibiotic resistance is controlled among cells in bacterial populations will provide insights into how antibiotics shape microbial communities. Here, we describe patterns of gene expression that arise from growth on a surface either in isolation or under subinhibitory chloramphenicol exposure.

View Article and Find Full Text PDF

Many gram-positive bacteria like and species, exhibit a growing chain-mediated sliding motility that is driven entirely by the force of cell growth. Particularly, the bacteria maintain cell-cell linkage after cell division and form long chains of many cells. The cells in a chain are continuously pushed outward by the mechanical force of cell growth.

View Article and Find Full Text PDF

Chronic osteomyelitis caused by implant infections is a common complication following orthopedic surgery. Preventing bacterial infection and simultaneously improving bone regeneration are the key for osteomyelitis. Current treatments include systemic antibiotics and multiple surgical interventions, but the strategies available for treatment are limited.

View Article and Find Full Text PDF

Numerous problems, including weathering, cracks, leaks, and bending, among others, appear in concrete after construction. The optimum procedure for treating concrete cracks is the subject of this study. The research goal is to find potential crack treatment materials and analyze the effect on the properties of concrete caused by the addition of bacterial solution to the concrete mix along with a particular method of preparation of bacterial solution.

View Article and Find Full Text PDF

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!