ADP is considered a weak platelet agonist due to the limited aggregation responses it induces in vitro at physiological concentrations of extracellular Ca(2+) [(Ca(2+) )(o) ]. Lowering [Ca(2+) ](o) paradoxically enhances ADP-evoked aggregation, an effect that has been attributed to enhanced thromboxane A(2) production. This study examined the role of ectonucleotidases in the [Ca(2+) ](o) -dependence of platelet activation. Reducing [Ca(2+) ](o) from millimolar to micromolar levels converted ADP (10 μmol/l)-evoked platelet aggregation from a transient to a sustained response in both platelet-rich plasma and washed suspensions. Blocking thromboxane A(2) production with aspirin had no effect on this [Ca(2+) ](o) -dependence. Prevention of ADP degradation abolished the differences between low and physiological [Ca(2+) ](o) resulting in a robust and sustained aggregation in both conditions. Measurements of extracellular ADP revealed reduced degradation in both plasma and apyrase-containing saline at micromolar compared to millimolar [Ca(2+) ](o) . As reported previously, thromboxane A(2) generation was enhanced at low [Ca(2+) ](o) , however this was independent of ectonucleotidase activity(.) P2Y receptor antagonists cangrelor and MRS2179 demonstrated the necessity of P2Y(12) receptors for sustained ADP-evoked aggregation, with a minor role for P2Y(1) . In conclusion, Ca(2+) -dependent ectonucleotidase activity is a major factor determining the extent of platelet aggregation to ADP and must be controlled for in studies of P2Y receptor activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084511 | PMC |
http://dx.doi.org/10.1111/j.1365-2141.2010.08499.x | DOI Listing |
Platelets
April 2022
Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
Kv1.3 is a voltage-gated K-selective channel with roles in immunity, insulin-sensitivity, neuronal excitability and olfaction. Despite being one of the largest ionic conductances of the platelet surface membrane, its contribution to platelet function is poorly understood.
View Article and Find Full Text PDFCell Calcium
December 2015
Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom; Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, United Kingdom. Electronic address:
Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange.
View Article and Find Full Text PDFMol Pharmacol
September 2014
University of Leicester, Department of Cell Physiology and Pharmacology, Leicester, United Kingdom
Many cells express both P2X cation channels and P2Y G-protein-coupled receptors that are costimulated by nucleotides released during physiologic or pathophysiologic responses. For example, during hemostasis and thrombosis, ATP-gated P2X1 channels and ADP-stimulated P2Y1 and P2Y12 G-protein coupled receptors play important roles in platelet activation. It has previously been reported that P2X1 receptors amplify P2Y1-evoked Ca(2+) responses in platelets, but the underlying mechanism and influence on function is unknown.
View Article and Find Full Text PDFBr J Haematol
April 2011
Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK.
ADP is considered a weak platelet agonist due to the limited aggregation responses it induces in vitro at physiological concentrations of extracellular Ca(2+) [(Ca(2+) )(o) ]. Lowering [Ca(2+) ](o) paradoxically enhances ADP-evoked aggregation, an effect that has been attributed to enhanced thromboxane A(2) production. This study examined the role of ectonucleotidases in the [Ca(2+) ](o) -dependence of platelet activation.
View Article and Find Full Text PDFArch Biochem Biophys
October 2009
Department of Physiology, Cell Physiology Research Group, University of Extremadura, Cáceres 10071, Spain.
Ca(2+) entry, particularly store-operated Ca(2+) entry (SOCE), has been reported to be crucial for a variety of cellular functions. SOCE is a mechanism regulated by the Ca(2+) content of the stores, where the intraluminal Ca(2+) sensor STromal Interaction Molecule 1 (STIM1) has been reported to communicate the filling state of the intracellular Ca(2+) stores to the store-operated Ca(2+)-permeable channels in the plasma membrane, likely involving Orai1 and TRPC proteins, such as TRPC1. Here we have investigated the role of Orai1, STIM1 and TRPC1 in platelet aggregation, an event that occurs during the process of thrombosis and hemostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!