Potential photocarcinogenic effects of nanoparticle sunscreens.

Australas J Dermatol

Illawarra Dermatology and Laser Clinic, Wollongong, New South Wales, Australia.

Published: February 2011

Titanium dioxide and zinc oxide nanoparticles are being increasingly formulated in sunscreens. While the same compounds, in larger particle form, work by reflecting UV radiation, in nanoparticle form, they absorb UV radiation, resulting in photocatalysis, releasing reactive oxygen species. These reactive oxygen species are known to have the capability to alter DNA. Previous studies suggest that this photocatalytic process may not be significant, because the nanoparticles do not penetrate below the level of the stratum corneum. However, some recent studies suggest that nanoparticles may, under certain circumstances, breach that barrier. The majority of those studies have used animal skin models rather than human skin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-0960.2010.00677.xDOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
potential photocarcinogenic
4
photocarcinogenic effects
4
effects nanoparticle
4
nanoparticle sunscreens
4
sunscreens titanium
4
titanium dioxide
4
dioxide zinc
4
zinc oxide
4

Similar Publications

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.

View Article and Find Full Text PDF

Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield.

Nature

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.

View Article and Find Full Text PDF

Cancer cells possess distinct bioelectrical properties, yet therapies leveraging these characteristics remain underexplored. Herein, we introduce an innovative nanobioelectronic system combining a piezoelectric barium titanate nanoparticle core with a conducting poly(3,4-ethylenedioxythiophene) shell (BTO@PEDOT NPs), designed to modulate cancer cell bioelectricity through noninvasive, wireless stimulation. Our hypothesis is that acting as nanoantennas, BTO@PEDOT NPs convert mechanical inputs provided by ultrasound (US) into electrical signals, capable of interfering with the bioelectronic circuitry of two human breast cancer cell lines, MCF-7 and MDA-MB-231.

View Article and Find Full Text PDF

Identification of novel hub gene and biological pathways associated with ferroptosis in In-Stent restenosis.

Gene

January 2025

Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi 832002 China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524000 Guangdong, China. Electronic address:

Background: In-stent restenosis (ISR) is one of the most significant complications following percutaneous coronary intervention (PCI) in patients with coronary artery disease (CAD). Ferroptosis is a novel cell death mode characterized by iron overload and lipid peroxidation. However, the role of ferroptosis in vascular smooth muscle cells (VSMCs) regulating neointimal formation during restenosis remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!