Aims: Radiation therapy (RT) is used in the treatment of approximately half of all cancer patients. Although there have been great improvements in tumor localization and the technical accuracy of RT delivery, some RT patients still have idiosyncratic hypersensitivity to ionizing radiation (IR) in their normal tissues. Although much effort has been expended in the search for assays that could detect radiosensitive individuals prior to treatment and facilitate tailored therapy; a suitable and clinically practical predictive assay has yet to be realized. Since DNA double-strand breaks (DSB) are a major lesion caused by IR, we hypothesized that radiation hypersensitive individuals might be deficient in the repair of such lesions.

Methods: To test this hypothesis we quantitatively and functionally characterized DSB repair of the two major non-homologous end-joining (NHEJ) sub-pathways in a pilot study using a plasmid repair reconstitution assay in lymphoblastoid and fibroblast cell lines from radiosensitive cancer patients and controls. Experiments using well-characterized mammalian DSB repair mutants demonstrated the ability of the assay to distinguish NHEJ sub-pathways. The proportion of direct end-joining repair compared with that of microhomology-directed repair was used as a functional end-point of DSB repair competence in the different cell lines.

Results: We found that the overall level of NHEJ sub-pathway repair competency was similar in cell lines from radiosensitive patients and controls.

Conclusion: These data suggest that this assay in these cell lineages has limited usefulness as a predictive screen for the endogenous DNA DSB repair competency of radiosensitive cancer patients' cells but can usefully characterize major cellular DSB repair phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1743-7563.2010.01364.xDOI Listing

Publication Analysis

Top Keywords

dsb repair
20
radiosensitive cancer
12
cancer patients
12
repair
11
cell lineages
8
repair major
8
major non-homologous
8
non-homologous end-joining
8
nhej sub-pathways
8
cell lines
8

Similar Publications

ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects.

J Clin Immunol

January 2025

Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.

Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.

View Article and Find Full Text PDF

The interplay between chromatin remodeling and DNA double-strand break repair: Implications for cancer biology and therapeutics.

DNA Repair (Amst)

January 2025

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA. Electronic address:

Proper chromatin remodeling is crucial for many cellular physiological processes, including the repair of DNA double-strand break (DSB). While the mechanism of DSB repair is well understood, the connection between chromatin remodeling and DSB repair remains incompletely elucidated. In this review, we aim to highlight recent studies demonstrating the close relationship between chromatin remodeling and DSB repair.

View Article and Find Full Text PDF

Argonaute 2 regulates nuclear DNA damage, repair, and phenotypes in Arabidopsis under genotoxic stress.

Plant Physiol Biochem

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.

Argonaute (AGO) proteins are involved in gene expression and genome integrity during biotic and abiotic stress responses. AGO2 mediates double-strand break (DSB) repair in DNA damage response (DDR) induced by genotoxic stress. However, beyond DSB repair, the involvement of AGO proteins in DDR remains unknown.

View Article and Find Full Text PDF

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF

The GC (Golgi complex) plays a pivotal role in the trafficking and sorting of proteins and lipids until they reach their final destination. Additionally, the GC acts as a signalling hub to regulate a multitude of cellular processes, including cell polarity, motility, apoptosis, DNA repair and cell division. In light of these crucial roles, the GC has garnered increasing attention, particularly given the evidence that a dysregulation of GC-regulated signalling pathways may contribute to the onset of various pathological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!