Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2011.02288.xDOI Listing

Publication Analysis

Top Keywords

water-water cycle
32
co2 assimilation
20
cycle activity
20
excess excitation
12
excitation energy
12
assimilation restricted
12
electron flux
12
compensation point
12
linear electron
12
activity detected
12

Similar Publications

Background: "Carbon footprint" (CF) is a direct measure of greenhouse gas emissions caused by a defined activity and can demonstrate global warming effects. The emissions of Greenhouse gases (GHGs) in water projects start from the primary water sources, followed by transportation, construction, and operation phases in the final treatment plants. Due to their possible environmental impacts, the water treatment plants equipped with Reverse Osmosis (RO) units will be investigated for their carbon footprint.

View Article and Find Full Text PDF

The determination of thiabendazole is crucial for ensuring food safety, environmental protection, and compliance with regulatory standards. Accurate detection helps prevent harmful exposure, ensuring the safety of agricultural products and safeguarding public health. Therefore, this study investigates the electrochemical sensing capabilities of newly synthesized oligo 3-amino-5-mercapto-1,2,4-triazole (oligo AMTa) using hydrogen tetrachloroaurate (III) (HAuCl) as an oxidizing agent at room temperature for thiabendazole (TBZ) detection, employing a simple electrode fabrication process.

View Article and Find Full Text PDF

Polystyrene nanoplastics in soil impair drought priming-induced low temperature tolerance in wheat.

Plant Physiol Biochem

May 2024

Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Drought priming is known to enhance plant low temperature tolerance, whereas polystyrene nanoplastic contamination exerts detrimental effects on plant growth. This study investigates the less-explored influence of nanoplastic contamination on cold stress tolerance in drought-primed plants. We compared the photosynthetic carbon assimilation, carbohydrate metabolism, reactive oxygen species metabolism, and grain yield between the non-primed and drought-primed wheat grown in both nanoplastic-contaminated and healthy soils.

View Article and Find Full Text PDF

The ascorbate-glutathione cycle coming of age.

J Exp Bot

May 2024

Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa.

Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence.

View Article and Find Full Text PDF

12-oxo-phytodienoic acid (OPDA) is a primary precursor of jasmonates, able to trigger autonomous signaling cascades that activate and fine-tune plant defense responses, as well as growth and development. However, its mechanism of actions remains largely elusive. Here we describe a dual-function messenger of OPDA signaling, reduced glutathione (GSH), that cross-regulates photosynthesis machinery and stress protection/adaptation in concert, optimizing plant plasticity and survival potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!