One of the principal problems in oral implantation is inflammation of peri-implant hard and soft tissues caused by bacterial biofilms. The purpose of the present study was to evaluate the microbial diversity of peri-implant biofilms on 2 different implant-anchored attachment types in vivo. Samples of peri-implant sulcus fluid were collected from 8 patients with implant-supported bar attachments and 8 patients with implant-anchored telescopic double crown attachments. Samples of sulcus fluid of the adjacent teeth were also collected from the partially edentulous patients with implant fixed telescopic double crowns. The mixed amplicons of 16S rRNA fragments of different bacterial origins were separated by use of single-strand conformation polymorphism analysis to identify the predominant bacterial genera. With 3.5 ± 2.1 different predominant bacterial genera in the sulcus fluid surrounding implant-supported bar attachments and 6.3 ± 3.1 different predominant genera in the sulcular fluid of implant-anchored double crown attachments, the differences were not statistically significant (P = .11). The microbial diversity in the sulcus fluid surrounding the remaining dentition was similar to that of the implant fixed telescopic attachments (6.3 ± 2.1). Aside from host response and other individual factors, the microbial diversity of peri-implant biofilms seems to be impaired by cofactors such as the possibility of cleaning the implant-supported supraconstructions and the different plaque-retaining sites. Nevertheless, these differences do not lead to statistically significant differences in the microbial diversity of peri-implant plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1563/AAID-JOI-D-10-00088DOI Listing

Publication Analysis

Top Keywords

microbial diversity
20
diversity peri-implant
16
sulcus fluid
16
peri-implant biofilms
12
implant fixed
12
telescopic double
12
double crown
12
crown attachments
12
implant-supported bar
8
bar attachments
8

Similar Publications

Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species.

View Article and Find Full Text PDF

In addition to their advantages as promising methods for wastewater treatment, CWs exhibit poor performance in terms of N and P removal efficiency in the effluent of wastewater treatment plants. By focusing on this issue, we designed CWs integrated with a biochar-doped activated carbon cloth (ACC) electrode and alum sludge from water treatment plants as a substrate to achieve concomitant organic matter and nutrient removal efficiency. Compared with the use of one layer of alum sludge in CWs (CWs-C3) with ACC electrodes inserted in two layers, which uses one layer of alum sludge, a significant improvement in removal efficiency was achieved (96% for COD; 89% for TN; and 77% for TP).

View Article and Find Full Text PDF

The interactions between sugar maple (, Marshall) and its microbial communities are important for tree fitness, growth, and establishment. Despite recent progress in our understanding of the rhizosphere and phyllosphere microbial communities of sugar maple, many outstanding knowledge gaps remain. This review delves into the relationships between sugar maple and its microbes, as climate change alters plant species distributions.

View Article and Find Full Text PDF

Endophytes typically coexist with plants in symbiosis and transition into the saprobic system as plant tissues senesce, participating in the decomposition process of litter. However, the dynamic changes of endophytic communities during this process and their role in litter decomposition remain unclear. This study tracked the microbial composition across the transition from live leaves to litter in (L.

View Article and Find Full Text PDF

Phosphorus (P)-deficient soils serve as crucial habitats for endangered plant species. Microbiomes play pivotal roles in soil element cycling and in determining a plant's adaptability to the environment. However, the relationship between the endangered plant, microbiome, and soil stoichiometric traits, and how it affects plant adaption to P-deficient habitats remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!