In this study, characteristic interactions of 2,5-dihydroxybenzoic acid (or gentisic acid, GA) with the surface of 15-nm-sized hematite (α-Fe2O3) were studied by combining batch macroscopic experiments, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigations, and surface complexation modeling. A correlation between the pH, the amount of adsorbed GA, and the amount of Fe(III) released from the hematite surface was observed, whereas the dissolution of hematite nanoparticles became significant only at low pH and high ligand loading. From the ATR-FTIR results, two aqueous complex structures have been identified depending on pH. At the hematite-water interface, the occurrence of one deprotonated inner-sphere "bidentate" complex and one outer-sphere complex was suggested through all of the investigated pH range. At high surface coverage, variations of vibrational band intensities were observed, suggesting the occurrence of nonspecific molecular interactions. The macroscopic results (i.e., GA batch sorption and the ligand-promoted dissolution of hematite) obtained under a wide range of experimental conditions corroborated the ATR-FTIR microscopic findings. GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with 1 mM sorbate concentration in the pH range of 3-9. Two surface complexes (one outer-sphere species (≡FeOH2)2···H2L((1+,1-)) and one inner-sphere species (≡Fe)2H2L) were proposed using the three-plane model. The inner-sphere complexes were predominant at low pH values, and the relative concentrations of the outer-sphere species increased with the pH increase. The formation of inner-sphere complexes at acidic pH values can promote the dissolution of nanosized hematite. At high solute loading, GA oxidation into carboxybenzoquinone compounds by ferric species was suspected, suggesting the occurrence of a redox reaction analogous to that of hydroquinone compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la104239x | DOI Listing |
Adv Biotechnol (Singap)
January 2025
School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.
View Article and Find Full Text PDFDiscov Nano
January 2025
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
In recent years, heightened concern has emerged regarding the pervasive presence of microplastics in the environment, particularly in aquatic ecosystems. This concern has prompted extensive scientific inquiry into microplastics' ecological and physiological implications, including threats to biodiversity. The robust adsorption capacity of microplastic surfaces facilitates their widespread distribution throughout aquatic ecosystems, acting also as carriers of organic pollutants.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.
This review is about drops of a liquid with high dielectric permittivity that slide over a solid surface with high electrical resistivity. A typical situation is a water drop sliding down a tilted hydrophobic plate. It has been realized recently that such drops spontaneously acquire a charge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!