A colorimetric pH indicators and boronic acids ensemble array for quantitative sugar analysis.

Chem Commun (Camb)

Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, 117543, Singapore.

Published: April 2011

The colorimetric response patterns of pH indicators and boronic acids ensemble array were used to analyze serial concentrations of mono-, disaccharides quantitatively. Furthermore, this ensemble array was successfully applied to quantify the sugar content in clinically used saline solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc04616gDOI Listing

Publication Analysis

Top Keywords

ensemble array
12
indicators boronic
8
boronic acids
8
acids ensemble
8
colorimetric indicators
4
array quantitative
4
quantitative sugar
4
sugar analysis
4
analysis colorimetric
4
colorimetric response
4

Similar Publications

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

Here we report four experiments that explore the nature of perceptual averaging. We examine the evidence that participants recover and store a representation of the mean value of a set of perceptual features that are distributed across the optic array. The extant evidence shows that participants are particularly accurate in estimating the relevant mean value, but we ask whether this might be due to processes that reflect assessing featural similarity rather than computing an average.

View Article and Find Full Text PDF

Prefrontal cortex neuronal ensembles dynamically encode task features during associative memory and virtual navigation.

Cell Rep

January 2025

Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. Electronic address:

Neuronal populations expand their information-encoding capacity using mixed selective neurons. This is particularly prominent in association areas such as the lateral prefrontal cortex (LPFC), which integrate information from multiple sensory systems. However, during conditions that approximate natural behaviors, it is unclear how LPFC neuronal ensembles process space- and time-varying information about task features.

View Article and Find Full Text PDF

Optimized Hybrid Deep Learning Framework for Early Detection of Alzheimer's Disease Using Adaptive Weight Selection.

Diagnostics (Basel)

December 2024

Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia.

Background: Alzheimer's disease (AD) is a progressive neurological disorder that significantly affects middle-aged and elderly adults, leading to cognitive deterioration and hindering daily activities. Notwithstanding progress, conventional diagnostic techniques continue to be susceptible to inaccuracies and inefficiencies. Timely and precise diagnosis is essential for early intervention.

View Article and Find Full Text PDF

Bioinspired Iron Porphyrin Covalent Organic Frameworks-Based Nanozymes Sensor Array: Machine Learning-Assisted Identification and Detection of Thiols.

ACS Appl Mater Interfaces

December 2024

Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.

Given the crucial role of thiols in maintaining normal physiological functions, it is essential to establish a high-throughput and sensitive analytical method to identify and quantify various thiols accurately. Inspired by the iron porphyrin active center of natural horseradish peroxidase (HRP), we designed and synthesized two iron porphyrin covalent organic frameworks (Fe-COF-H and Fe-COF-OH) with notable peroxidase-like (POD) activity, capable of catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB with three distinct absorption peaks. Based on these, a six-channel nanozyme colorimetric sensor array was constructed, which could map the specific fingerprints of various thiols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!