Endocytosis is a fundamental process of membrane-trafficking in eukaryotes, but has not been known to occur in bacteria or archaea. The origin of endocytosis is central to the understanding of evolution of the first eukaryotes and their endomembrane systems. In a recent study we have established that an endocytosis-like process for uptake of proteins into cells occurs in a bacterium, Gemmata obscuriglobus, a member of the distinctive phylum Planctomycetes of peptidoglycan-less budding bacteria. Members of this phylum characteristically possess cells divided into compartments separated by internal membranes and in the case of G. obscuriglobus these compartments include one where a double membrane envelope surrounds its nucleoid DNA, as well as an outer ribosome- free region of cytoplasm. Proteins can be internalized by cells from the external milieu and collected into this ribosome-free compartment, and this process is energy-dependent and appears to be receptor-mediated. As in eukaryote endocytosis, internalized proteins are associated with vesicles, and can be subjected to proteolytic degradation. The discovery of this process in a bacterium has significant implications for our understanding of the origins of endocytosis in eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038067 | PMC |
http://dx.doi.org/10.4161/cib.3.6.13061 | DOI Listing |
Proc Natl Acad Sci U S A
July 2023
Division of Physical Chemistry, Department of Chemistry, Lund University, Lund 22100, Sweden.
Cellular engulfment and uptake of macromolecular assemblies or nanoparticles via endocytosis can be associated to both healthy and disease-related biological processes as well as delivery of drug nanoparticles and potential nanotoxicity of pollutants. Depending on the physical and chemical properties of the system, the adsorbed particles may remain at the membrane surface, become wrapped by the membrane, or translocate across the membrane through an endocytosis-like process. In this paper, we address the question of how the wrapping of colloidal particles by lipid membranes can be controlled by the shape of the particles, the particle-membrane adhesion energy, the membrane phase behavior, and the membrane-bending rigidity.
View Article and Find Full Text PDFMembranes (Basel)
March 2023
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Recent experiments have indicated that at least a part of the osmotic pressure across the giant unilamellar vesicle (GUV) membrane was balanced by the rapid formation of the monodisperse daughter vesicles inside the GUVs through an endocytosis-like process. Therefore, we investigated a possible osmotic role played by these daughter vesicles for the maintenance of osmotic regulation in the GUVs and, by extension, in living cells. We highlighted a mechanism whereby the daughter vesicles acted as osmotically active solutes (osmoticants), contributing an extra vestigial osmotic pressure component across the membrane of the parent vesicle, and we showed that the consequences were consistent with experimental observations.
View Article and Find Full Text PDFJ Am Chem Soc
March 2023
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2023
College of Geography and Environment, Shandong Normal University, Jinan 250358, China.
Commercial nano-scale carbon blacks (CB) are being harnessed widely and may impose potentially hazardous effects because of their unique properties, especially if they have been modified to grow reactive functional groups on their surface. Cytotoxicity of CB has been well studied but the membrane damage mechanisms and role of surface modification are still open to debate. Negatively and positively charged giant unilamellar vesicles (GUVs) were prepared using three lipids as model cell membranes to examine the mechanistic damage of CB and MCB (modified by acidic potassium permanganate) aggregates.
View Article and Find Full Text PDFNat Commun
September 2022
Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!