This paper deals with the analysis of the behavior of objective image quality parameters for the new GE Senographe Essential FFDM system, in particular its dependence with beam quality. The detector consists of an indirect conversion a-Si flat panel coupled to a CsI:Tl scintillator. The system under study has gone through a series of relevant modifications in flat panel with respect to the previous model (GE Senographe DS 2000). These changes in the detector modify its performance and are intended to favor advanced applications like tomosynthesis, which uses harder beam spectra and lower doses per exposure than conventional FFDM. Although our system does not have tomosynthesis implemented, we noticed that most clinical explorations were performed by automatically selecting a harder spectrum than that of typical use in FFDM (Rh/Rh 28-30 kV instead of Mo/Mo 28 kV). Since flat-panel optimization for tomosynthesis influences the usual FFDM clinical performance, the new detector behavior needed to be investigated. Therefore, the aim of our study is evaluating the dependence of the detector performance for different beam spectra and exposure levels. In this way, we covered the clinical beam quality range (Rh/Rh 28-30 kV) and we extended the study to even harder spectra (Rh/Rh 34 kV). Detector performance is quantified by means of modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). We found that flat-panel optimization results in slightly - but statistically significant - higher DQE values as beam quality increases, which is contrary to the expected behavior. This positive correlation between beam quality and DQE is also diametrically opposite to that of the previous model by the same manufacturer. As a direct consequence, usual FFDM takes advantage of the changes in the detector, as less exposure is needed to achieve the same DQE if harder beams are used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718588 | PMC |
http://dx.doi.org/10.1120/jacmp.v12i1.3176 | DOI Listing |
Med Phys
January 2025
Department of Radiation Oncology, Duke University, North Carolina, USA.
Background: The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation.
Purpose: To facilitate the clinical treatment planning automation of breast radiation therapy, we utilized reinforcement learning (RL) to develop an auto-planning tool that iteratively edits the fluence maps under the guidance of clinically relevant objectives.
Nanomaterials (Basel)
January 2025
Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
Artificial microstructures, especially metamaterials, have garnered increasing attention in numerous applications due to their rich and distinctive properties. Starting from the principle of multi-beam interference, we have theoretically devised a beam configuration consisting of six symmetrically distributed coherent beams to generate two-dimensional microstructures with diverse shapes of unitcells under different polarization combinations. In particular, a split-ring metamaterial template is achieved with two adjacent circularly and four linearly polarized beams with such single-step holographic interferometry.
View Article and Find Full Text PDFCurr Oncol
January 2025
Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands.
Normal tissue reactions vary significantly among patients receiving the same radiation treatment regimen, reflecting the multifactorial etiology of late radiation toxicity. Predicting late radiation toxicity is crucial, as it aids in the initial decision-making process regarding the treatment modalities. For patients undergoing radiotherapy, anticipating late toxicity allows for planning adjustments to optimize individualized care.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Applied Morphology Research Center (CIMA), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile.
Background: Sex estimation is the first stage in the identification of an individual in the forensic context, and can be carried out from bone structures like the mandible. The aim of this study was to estimate sex from metric analysis of the mandible in cone beam computed tomography images (CBCT) of adult Chilean individuals.
Methods: Six mandibular measurements were analysed, five linear and one angular, in CBCT of adult Chilean individuals of both sexes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!