AI Article Synopsis

  • The Src family of protein kinases (SFK) are crucial for various cellular processes and are implicated in cancer, making them potential therapeutic targets.
  • MicroRNA-205 (miR-205) is significantly reduced in renal cancer cells and tumors compared to normal cells, and its expression is inversely related to SFK levels.
  • Overexpressing miR-205 in renal cancer cells leads to reduced expression of SFKs, decreased cell proliferation and migration, and promotes cell cycle arrest and apoptosis, highlighting its therapeutic potential in renal cancer treatment.

Article Abstract

The Src family of protein kinases (SFK) plays key roles in regulating fundamental cellular processes, including cell growth, differentiation, cell shape, migration, and survival, and specialized cell signals in various malignancies. The pleiotropic functions of SFKs in cancer make them promising targets for intervention. Here, we sought to investigate the role of microRNA-205 (miR-205) in inhibition of Src-mediated oncogenic pathways in renal cancer. We report that expression of miR-205 was significantly suppressed in renal cancer cell lines and tumors when compared with normal tissues and a nonmalignant cell line and is correlated inversely with the expression of SFKs. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR (untranslated region) sequences complementary to either Src, Lyn, or Yes, which was abolished by mutations in these 3'-UTR regions. Overexpression of miR-205 in A498 cells reduced Src, Lyn, and Yes expression, both at mRNA and protein levels. Proliferation of renal cancer cells was suppressed by miR-205, mediated by the phospho-Src-regulated ERK1/2 pathway. Cell motility factor FAK (focal adhesion kinase) and STAT3 activation were also inhibited by miR-205. Transient and stable overexpression of miR-205 in A498 cells resulted in induction of G₀/G₁ cell-cycle arrest and apoptosis, as indicated by decreased levels of cyclin D1 and c-Myc, suppressed cell proliferation, colony formation, migration, and invasion in renal cancer cells. miR-205 also inhibited tumor cell growth in vivo. This is the first study showing that miR-205 inhibits proto-oncogenic SFKs, indicating a therapeutic potential of miR-205 in the treatment of renal cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940352PMC
http://dx.doi.org/10.1158/0008-5472.CAN-10-3666DOI Listing

Publication Analysis

Top Keywords

renal cancer
24
mir-205
10
src-mediated oncogenic
8
oncogenic pathways
8
pathways renal
8
cell
8
cell growth
8
mir-205 suppressed
8
src lyn
8
overexpression mir-205
8

Similar Publications

A real-world pharmacovigilance analysis of potential ototoxicity associated with sacubitril/valsartan based on FDA Adverse Event Reporting System (FAERS).

Sci Rep

December 2024

Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, is widely used to treat heart failure. Despite its efficacy, sacubitril/valsartan inevitably causes adverse events such as hypotension, renal dysfunction, hyperkalemia, and angioedema. Sacubitril/valsartan-associated ototoxicity is often underreported in clinical studies and real-world settings.

View Article and Find Full Text PDF

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Dual-stage optimizer for systematic overestimation adjustment applied to multi-objective genetic algorithms for biomarker selection.

Brief Bioinform

November 2024

School of Medicine, Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, PO Box 1627, 70211 Kuopio, Finland.

The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various feature sets-potential biomarker solutions-to fine-tune a machine learning model's performance for supervised tasks, such as classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective feature combinations.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD), a.k.a diabetic nephropathy, is a leading cause of end-stage renal disease.

View Article and Find Full Text PDF

Major vessel invasion, particularly involving the portal and superior mesenteric veins, poses significant challenges during the radical resection of hepatobiliary and pancreatic cancers. Oncovascular surgery is essential for curative outcomes, and often requires portomesenteric vein reconstruction. Techniques, such as lateral venorrhaphy, patch repair, end-to-end anastomosis, and interposition grafting, have been employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!