The transfer of touch DNA from hands to glass, fabric and wood.

Forensic Sci Int Genet

Forensic Science Laboratory, Garda HQ, Phoenix Park, Dublin 8, Ireland.

Published: January 2012

The transfer of DNA from hands to objects by holding or touching has been examined in the past. The main purpose of this study was to examine the variation in the amount of DNA transferred from hands to glass, fabric and wood. The study involved 300 volunteers (100 for glass, 100 for fabric and 100 for wood) 50% of which were male and 50% female. The volunteers held the material for 60s. The DNA was recovered from the objects using a minitape lift, quantified using the Quantifiler kit assay, extracted using a 'Qiagen(®) QIAamp DNA mini kit' and amplified using the AmpFlSTR(®) SGM Plus™ Amplification Kit at 28 cycles. The results show that using ANOVA there was a significant difference (F=8.2, p<0.05) between the three object types in the amount of DNA recovered. In terms of DNA transfer and recovery, wood gave the best yield, followed by fabric and then glass. The likelihood of success of obtaining a profile indicative of the holder was approximately 9% for glass samples, 23% for fabric and 36% for wood. There was no significant difference between the amount of DNA transferred by male or female volunteers. In this study good shedder status, as defined by obtaining useful profiles of 6 or more alleles, is estimated at approximately 22% of the population. The phenomenon of secondary transfer was observed when mixed DNA profiles were obtained but the incidence was low at approximately 10% of the total number of samples. DNA profiles corresponding to more than one person were found on objects which had been touched by only one volunteer. Although secondary transfer is possible the profiles obtained from touched objects are more likely to be as a result of primary transfer rather than a secondary source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2010.12.016DOI Listing

Publication Analysis

Top Keywords

dna hands
8
hands glass
8
glass fabric
8
fabric wood
8
dna
5
transfer touch
4
touch dna
4
wood transfer
4
transfer dna
4
hands objects
4

Similar Publications

Vitamin D status and its determinants in German elite athletes.

Eur J Appl Physiol

January 2025

Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.

Purpose: This study investigated elite German athletes to (1) assess their serum 25(OH)D levels and the prevalence of insufficiency, (2) identify key factors influencing serum 25(OH)D levels, and (3) analyze the association between serum 25(OH)D levels and handgrip strength.

Methods: In this cross-sectional study, a total of 474 athletes (231 female), aged 13-39 years (mean 19.3 years), from ten Olympic disciplines were included.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum stress with protein misfolding has been introduced as a key pathogenetic mechanism in lupus nephritis (LN). Pregnancy is thought to exaggerate proteostasis, which leads to the accumulation of potentially pathogenic misfolded proteins in the urine, serum, and placenta particularly in women with preeclampsia. The detection of misfolded proteins is made using Congo red stain, which is referred to as congophilia.

View Article and Find Full Text PDF

Iron in the migraine brain.

Histol Histopathol

December 2024

Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Türkiye.

Iron, a vital element for numerous peripheral and central nervous system functions, is a key player in DNA synthesis, gene expression, myelination, neurotransmission, and mitochondrial electron transport. Iron has utmost importance in various neurological functions, including neurotransmitter synthesis and brain cell metabolism. Migraine is a neurogliovascular disorder in which neuroinflammation plays a crucial role.

View Article and Find Full Text PDF

A Simple Method to Analyze Context- and Tissue-Specific Cis-Regulatory Modulations of Homeotic (HOX) Genes Using ChIP.

Methods Mol Biol

January 2025

Department of Integrative Biology and Physiology, Medical School, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.

Homeobox genes (HOX), the master regulators, deploy a unique set of target genes to coordinate and orchestrate the spatiotemporal development of an organism. HOX encoded transcriptional factors regulate the expression of target genes by binding to the specific sequences on the genome. Chromatin Immunoprecipitation (ChIP) and Chromatin Immunoprecipitation with Sequencing (ChIP-Seq) are widely used to map and understand specific gene locus and global regulatory regions on the genome.

View Article and Find Full Text PDF

, commonly known as stock, is a flowering plant species in the Brassicaceae popularly used as a cut flower due to its fragrant, long-lasting blooms. In September 2023, stock 'Iron White' plants displaying symptoms and signs of downy mildew were observed within a high tunnel in a cut flower farm in Franklin Co., OH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!